POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES

Since the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2019-07, Vol.100 (7), p.1245-1258
Hauptverfasser: Roberts, Brett, Jirak, Israel L., Clark, Adam J., Weiss, Steven J., Kain, John S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 7
container_start_page 1245
container_title Bulletin of the American Meteorological Society
container_volume 100
creator Roberts, Brett
Jirak, Israel L.
Clark, Adam J.
Weiss, Steven J.
Kain, John S.
description Since the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble forecast systems, through which a broad range of successful forecasting applications have been demonstrated. This work has prepared the National Weather Service (NWS) for practical usage of the High Resolution Ensemble Forecast (HREF) system, which was implemented operationally in November 2017. Historically, methods for postprocessing and visualizing products from regional and global ensemble prediction systems (e.g., ensemble means and spaghetti plots) have been applied to fields that provide information on mesoscale to synoptic-scale processes. However, much of the value from CAMs is derived from the explicit simulation of deep convection and associated storm-attribute fields like updraft helicity and simulated reflectivity. Thus, fully exploiting CAM ensembles for forecasting applications has required the development of fundamentally new data extraction, postprocessing, and visualization strategies. In the process, challenges imposed by the immense data volume inherent to these systems required new approaches when considering diverse factors like forecaster interpretation and computational expense. In this article, we review the current state of post­processing and visualization for CAM ensembles, with a particular focus on forecast applications for severe convective hazards that have been evaluated within NOAA’s Hazardous Weather Testbed. The HREF web viewer implemented at the NWS Storm Prediction Center (SPC) is presented as a prototype for deploying these techniques in real time on a flexible and widely accessible platform.
doi_str_mv 10.1175/BAMS-D-18-0041.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2260548077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27026828</jstor_id><sourcerecordid>27026828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-9d89a3f1f17fe791777853c2b0b8a3995948f8019e0b832360d1b7613fa188273</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvXoSA560zu0l2c0zTbRtIk9pNK3hZ0jYLFjWatAf_vVkqnoaZ9948-Ai5RxghiuBpHC80nVCUFMDHEV6QAQYMKPhCXJIBAPBeAXFNbrru4FYucUAWy0KXy1WRKK3TfObF-cTbpHodZ-lrXKZF7pUqmefp81ppb1qsvKTINypxCo2zrHhxIZVrtRhnSt-SK1u9d_Xd3xyS9VSVyZxmxSxN4ozuOA-ONNrLqOIWLQpbiwiFEDLgO7aFrax4FAWRL60EjOr-wBkPYY9bESK3FUrJBB-Sx_Pfr7b5PtXd0RyaU_vZVxrGQgh8CcK54OzatU3XtbU1X-3bR9X-GATjoBkHzUwMSuOgGewjD-fIoTs27b-fCWChZJL_AshrYKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260548077</pqid></control><display><type>article</type><title>POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Roberts, Brett ; Jirak, Israel L. ; Clark, Adam J. ; Weiss, Steven J. ; Kain, John S.</creator><creatorcontrib>Roberts, Brett ; Jirak, Israel L. ; Clark, Adam J. ; Weiss, Steven J. ; Kain, John S.</creatorcontrib><description>Since the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble forecast systems, through which a broad range of successful forecasting applications have been demonstrated. This work has prepared the National Weather Service (NWS) for practical usage of the High Resolution Ensemble Forecast (HREF) system, which was implemented operationally in November 2017. Historically, methods for postprocessing and visualizing products from regional and global ensemble prediction systems (e.g., ensemble means and spaghetti plots) have been applied to fields that provide information on mesoscale to synoptic-scale processes. However, much of the value from CAMs is derived from the explicit simulation of deep convection and associated storm-attribute fields like updraft helicity and simulated reflectivity. Thus, fully exploiting CAM ensembles for forecasting applications has required the development of fundamentally new data extraction, postprocessing, and visualization strategies. In the process, challenges imposed by the immense data volume inherent to these systems required new approaches when considering diverse factors like forecaster interpretation and computational expense. In this article, we review the current state of post­processing and visualization for CAM ensembles, with a particular focus on forecast applications for severe convective hazards that have been evaluated within NOAA’s Hazardous Weather Testbed. The HREF web viewer implemented at the NWS Storm Prediction Center (SPC) is presented as a prototype for deploying these techniques in real time on a flexible and widely accessible platform.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-18-0041.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Computer applications ; Computer simulation ; Convection ; Ensemble forecasting ; Fields ; Hazards ; Helicity ; Laboratories ; Meteorological services ; Prototypes ; Real time ; Reflectance ; Storm forecasting ; Storms ; Visualization ; Weather ; Weather forecasting</subject><ispartof>Bulletin of the American Meteorological Society, 2019-07, Vol.100 (7), p.1245-1258</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-9d89a3f1f17fe791777853c2b0b8a3995948f8019e0b832360d1b7613fa188273</citedby><cites>FETCH-LOGICAL-c335t-9d89a3f1f17fe791777853c2b0b8a3995948f8019e0b832360d1b7613fa188273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27026828$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27026828$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Roberts, Brett</creatorcontrib><creatorcontrib>Jirak, Israel L.</creatorcontrib><creatorcontrib>Clark, Adam J.</creatorcontrib><creatorcontrib>Weiss, Steven J.</creatorcontrib><creatorcontrib>Kain, John S.</creatorcontrib><title>POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES</title><title>Bulletin of the American Meteorological Society</title><description>Since the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble forecast systems, through which a broad range of successful forecasting applications have been demonstrated. This work has prepared the National Weather Service (NWS) for practical usage of the High Resolution Ensemble Forecast (HREF) system, which was implemented operationally in November 2017. Historically, methods for postprocessing and visualizing products from regional and global ensemble prediction systems (e.g., ensemble means and spaghetti plots) have been applied to fields that provide information on mesoscale to synoptic-scale processes. However, much of the value from CAMs is derived from the explicit simulation of deep convection and associated storm-attribute fields like updraft helicity and simulated reflectivity. Thus, fully exploiting CAM ensembles for forecasting applications has required the development of fundamentally new data extraction, postprocessing, and visualization strategies. In the process, challenges imposed by the immense data volume inherent to these systems required new approaches when considering diverse factors like forecaster interpretation and computational expense. In this article, we review the current state of post­processing and visualization for CAM ensembles, with a particular focus on forecast applications for severe convective hazards that have been evaluated within NOAA’s Hazardous Weather Testbed. The HREF web viewer implemented at the NWS Storm Prediction Center (SPC) is presented as a prototype for deploying these techniques in real time on a flexible and widely accessible platform.</description><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Ensemble forecasting</subject><subject>Fields</subject><subject>Hazards</subject><subject>Helicity</subject><subject>Laboratories</subject><subject>Meteorological services</subject><subject>Prototypes</subject><subject>Real time</subject><subject>Reflectance</subject><subject>Storm forecasting</subject><subject>Storms</subject><subject>Visualization</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLw0AQhRdRsFbvXoSA560zu0l2c0zTbRtIk9pNK3hZ0jYLFjWatAf_vVkqnoaZ9948-Ai5RxghiuBpHC80nVCUFMDHEV6QAQYMKPhCXJIBAPBeAXFNbrru4FYucUAWy0KXy1WRKK3TfObF-cTbpHodZ-lrXKZF7pUqmefp81ppb1qsvKTINypxCo2zrHhxIZVrtRhnSt-SK1u9d_Xd3xyS9VSVyZxmxSxN4ozuOA-ONNrLqOIWLQpbiwiFEDLgO7aFrax4FAWRL60EjOr-wBkPYY9bESK3FUrJBB-Sx_Pfr7b5PtXd0RyaU_vZVxrGQgh8CcK54OzatU3XtbU1X-3bR9X-GATjoBkHzUwMSuOgGewjD-fIoTs27b-fCWChZJL_AshrYKw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Roberts, Brett</creator><creator>Jirak, Israel L.</creator><creator>Clark, Adam J.</creator><creator>Weiss, Steven J.</creator><creator>Kain, John S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20190701</creationdate><title>POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES</title><author>Roberts, Brett ; Jirak, Israel L. ; Clark, Adam J. ; Weiss, Steven J. ; Kain, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-9d89a3f1f17fe791777853c2b0b8a3995948f8019e0b832360d1b7613fa188273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Ensemble forecasting</topic><topic>Fields</topic><topic>Hazards</topic><topic>Helicity</topic><topic>Laboratories</topic><topic>Meteorological services</topic><topic>Prototypes</topic><topic>Real time</topic><topic>Reflectance</topic><topic>Storm forecasting</topic><topic>Storms</topic><topic>Visualization</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Brett</creatorcontrib><creatorcontrib>Jirak, Israel L.</creatorcontrib><creatorcontrib>Clark, Adam J.</creatorcontrib><creatorcontrib>Weiss, Steven J.</creatorcontrib><creatorcontrib>Kain, John S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Brett</au><au>Jirak, Israel L.</au><au>Clark, Adam J.</au><au>Weiss, Steven J.</au><au>Kain, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>100</volume><issue>7</issue><spage>1245</spage><epage>1258</epage><pages>1245-1258</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Since the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble forecast systems, through which a broad range of successful forecasting applications have been demonstrated. This work has prepared the National Weather Service (NWS) for practical usage of the High Resolution Ensemble Forecast (HREF) system, which was implemented operationally in November 2017. Historically, methods for postprocessing and visualizing products from regional and global ensemble prediction systems (e.g., ensemble means and spaghetti plots) have been applied to fields that provide information on mesoscale to synoptic-scale processes. However, much of the value from CAMs is derived from the explicit simulation of deep convection and associated storm-attribute fields like updraft helicity and simulated reflectivity. Thus, fully exploiting CAM ensembles for forecasting applications has required the development of fundamentally new data extraction, postprocessing, and visualization strategies. In the process, challenges imposed by the immense data volume inherent to these systems required new approaches when considering diverse factors like forecaster interpretation and computational expense. In this article, we review the current state of post­processing and visualization for CAM ensembles, with a particular focus on forecast applications for severe convective hazards that have been evaluated within NOAA’s Hazardous Weather Testbed. The HREF web viewer implemented at the NWS Storm Prediction Center (SPC) is presented as a prototype for deploying these techniques in real time on a flexible and widely accessible platform.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-18-0041.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2019-07, Vol.100 (7), p.1245-1258
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_journals_2260548077
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects Computer applications
Computer simulation
Convection
Ensemble forecasting
Fields
Hazards
Helicity
Laboratories
Meteorological services
Prototypes
Real time
Reflectance
Storm forecasting
Storms
Visualization
Weather
Weather forecasting
title POSTPROCESSING AND VISUALIZATION TECHNIQUES FOR CONVECTION-ALLOWING ENSEMBLES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POSTPROCESSING%20AND%20VISUALIZATION%20TECHNIQUES%20FOR%20CONVECTION-ALLOWING%20ENSEMBLES&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Roberts,%20Brett&rft.date=2019-07-01&rft.volume=100&rft.issue=7&rft.spage=1245&rft.epage=1258&rft.pages=1245-1258&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-18-0041.1&rft_dat=%3Cjstor_proqu%3E27026828%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260548077&rft_id=info:pmid/&rft_jstor_id=27026828&rfr_iscdi=true