Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach
A common way to model decision maker (DM) preferences in multiple criteria decision making problems is through the use of utility functions. The elicitation of the parameters of these functions is a major task that directly affects the validity and practical value of the decision making process. Thi...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2020-10, Vol.293 (2), p.495-519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 2 |
container_start_page | 495 |
container_title | Annals of operations research |
container_volume | 293 |
creator | Yet, Barbaros Tuncer Şakar, Ceren |
description | A common way to model decision maker (DM) preferences in multiple criteria decision making problems is through the use of utility functions. The elicitation of the parameters of these functions is a major task that directly affects the validity and practical value of the decision making process. This paper proposes a novel Bayesian method that estimates the weights of criteria in linear additive utility functions by asking the DM to rank or select the best alternative in groups of decision alternatives. Our method computes the entire probability distribution of weights and utility predictions based on the DM’s answers. Therefore, it enables the DM to estimate the expected value of weights and predictions, and the uncertainty regarding these values. Additionally, the proposed method can estimate the weights by asking the DM to evaluate few groups of decision alternatives since it can incorporate various types of inputs from the DM in the form of rankings, constraints and prior distributions. Our method successfully estimates criteria weights in two case studies about financial investment and university ranking decisions. Increasing the variety of inputs, such as using both ranking of decision alternatives and constraints on the importance of criteria, enables our method to compute more accurate estimations with fewer inputs from the DM. |
doi_str_mv | 10.1007/s10479-019-03313-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2260281315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A637749022</galeid><sourcerecordid>A637749022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-c8c60f6c4987dbbcc5e3f42379afb9ede190ac0b7aa57261d734ee925db3cddb3</originalsourceid><addsrcrecordid>eNp9kV1LHTEQhoNY6FH7B3oV8Lar-djd7HpnxbaC0Bt7HbLZ2XX0bPaYySL66409haNQJGQGMs87w-Rl7KsUJ1IIc0pSlKYthMxXa6mL5z22kpVRRat1s89WQlVlUWktPrMDojshhJRNtWLdJSWcXMIwch8xQUTHHwHH28R7pBSxWxLOgTgGPi3rhJs17MgePFIu88nd5xZn3PHv7gkIXeBus4mz87dH7NPg1gRf_uVD9ufH5c3Fr-L698-ri_PrwpdKp8I3vhZD7cu2MX3XeV-BHnLFtG7oWuhBtsJ50Rnn8l617I0uAVpV9Z32fQ6H7HjbN499WICSvZuXGPJIq1QtVCO1rHbU6NZgMQxzis5PSN6e19qYshVKZerkP1Q-PUzo5wAD5vd3gm9vBN1CGIByoNefpNEtRO9xtcV9nIkiDHYTsw3xyUphXx21W0dtdtT-ddQ-Z5HeiijDYYS4W_AD1QtTVaUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260281315</pqid></control><display><type>article</type><title>Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yet, Barbaros ; Tuncer Şakar, Ceren</creator><creatorcontrib>Yet, Barbaros ; Tuncer Şakar, Ceren</creatorcontrib><description>A common way to model decision maker (DM) preferences in multiple criteria decision making problems is through the use of utility functions. The elicitation of the parameters of these functions is a major task that directly affects the validity and practical value of the decision making process. This paper proposes a novel Bayesian method that estimates the weights of criteria in linear additive utility functions by asking the DM to rank or select the best alternative in groups of decision alternatives. Our method computes the entire probability distribution of weights and utility predictions based on the DM’s answers. Therefore, it enables the DM to estimate the expected value of weights and predictions, and the uncertainty regarding these values. Additionally, the proposed method can estimate the weights by asking the DM to evaluate few groups of decision alternatives since it can incorporate various types of inputs from the DM in the form of rankings, constraints and prior distributions. Our method successfully estimates criteria weights in two case studies about financial investment and university ranking decisions. Increasing the variety of inputs, such as using both ranking of decision alternatives and constraints on the importance of criteria, enables our method to compute more accurate estimations with fewer inputs from the DM.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-019-03313-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternatives ; Analysis ; Bayesian analysis ; Bayesian statistical decision theory ; Business and Management ; Combinatorics ; Decision making ; Expected values ; Mathematical optimization ; Multiple criteria decision making ; Multiple criterion ; Operations research ; Operations Research/Decision Theory ; Ranking ; S.i.: Mcdm 2017 ; Theory of Computation ; Utility functions</subject><ispartof>Annals of operations research, 2020-10, Vol.293 (2), p.495-519</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Annals of Operations Research is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-c8c60f6c4987dbbcc5e3f42379afb9ede190ac0b7aa57261d734ee925db3cddb3</citedby><cites>FETCH-LOGICAL-c423t-c8c60f6c4987dbbcc5e3f42379afb9ede190ac0b7aa57261d734ee925db3cddb3</cites><orcidid>0000-0003-4058-2677 ; 0000-0002-6269-4234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-019-03313-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-019-03313-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yet, Barbaros</creatorcontrib><creatorcontrib>Tuncer Şakar, Ceren</creatorcontrib><title>Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>A common way to model decision maker (DM) preferences in multiple criteria decision making problems is through the use of utility functions. The elicitation of the parameters of these functions is a major task that directly affects the validity and practical value of the decision making process. This paper proposes a novel Bayesian method that estimates the weights of criteria in linear additive utility functions by asking the DM to rank or select the best alternative in groups of decision alternatives. Our method computes the entire probability distribution of weights and utility predictions based on the DM’s answers. Therefore, it enables the DM to estimate the expected value of weights and predictions, and the uncertainty regarding these values. Additionally, the proposed method can estimate the weights by asking the DM to evaluate few groups of decision alternatives since it can incorporate various types of inputs from the DM in the form of rankings, constraints and prior distributions. Our method successfully estimates criteria weights in two case studies about financial investment and university ranking decisions. Increasing the variety of inputs, such as using both ranking of decision alternatives and constraints on the importance of criteria, enables our method to compute more accurate estimations with fewer inputs from the DM.</description><subject>Alternatives</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Decision making</subject><subject>Expected values</subject><subject>Mathematical optimization</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Ranking</subject><subject>S.i.: Mcdm 2017</subject><subject>Theory of Computation</subject><subject>Utility functions</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1LHTEQhoNY6FH7B3oV8Lar-djd7HpnxbaC0Bt7HbLZ2XX0bPaYySL66409haNQJGQGMs87w-Rl7KsUJ1IIc0pSlKYthMxXa6mL5z22kpVRRat1s89WQlVlUWktPrMDojshhJRNtWLdJSWcXMIwch8xQUTHHwHH28R7pBSxWxLOgTgGPi3rhJs17MgePFIu88nd5xZn3PHv7gkIXeBus4mz87dH7NPg1gRf_uVD9ufH5c3Fr-L698-ri_PrwpdKp8I3vhZD7cu2MX3XeV-BHnLFtG7oWuhBtsJ50Rnn8l617I0uAVpV9Z32fQ6H7HjbN499WICSvZuXGPJIq1QtVCO1rHbU6NZgMQxzis5PSN6e19qYshVKZerkP1Q-PUzo5wAD5vd3gm9vBN1CGIByoNefpNEtRO9xtcV9nIkiDHYTsw3xyUphXx21W0dtdtT-ddQ-Z5HeiijDYYS4W_AD1QtTVaUI</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yet, Barbaros</creator><creator>Tuncer Şakar, Ceren</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4058-2677</orcidid><orcidid>https://orcid.org/0000-0002-6269-4234</orcidid></search><sort><creationdate>20201001</creationdate><title>Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach</title><author>Yet, Barbaros ; Tuncer Şakar, Ceren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-c8c60f6c4987dbbcc5e3f42379afb9ede190ac0b7aa57261d734ee925db3cddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternatives</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Decision making</topic><topic>Expected values</topic><topic>Mathematical optimization</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Ranking</topic><topic>S.i.: Mcdm 2017</topic><topic>Theory of Computation</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yet, Barbaros</creatorcontrib><creatorcontrib>Tuncer Şakar, Ceren</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yet, Barbaros</au><au>Tuncer Şakar, Ceren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>293</volume><issue>2</issue><spage>495</spage><epage>519</epage><pages>495-519</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>A common way to model decision maker (DM) preferences in multiple criteria decision making problems is through the use of utility functions. The elicitation of the parameters of these functions is a major task that directly affects the validity and practical value of the decision making process. This paper proposes a novel Bayesian method that estimates the weights of criteria in linear additive utility functions by asking the DM to rank or select the best alternative in groups of decision alternatives. Our method computes the entire probability distribution of weights and utility predictions based on the DM’s answers. Therefore, it enables the DM to estimate the expected value of weights and predictions, and the uncertainty regarding these values. Additionally, the proposed method can estimate the weights by asking the DM to evaluate few groups of decision alternatives since it can incorporate various types of inputs from the DM in the form of rankings, constraints and prior distributions. Our method successfully estimates criteria weights in two case studies about financial investment and university ranking decisions. Increasing the variety of inputs, such as using both ranking of decision alternatives and constraints on the importance of criteria, enables our method to compute more accurate estimations with fewer inputs from the DM.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-019-03313-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-4058-2677</orcidid><orcidid>https://orcid.org/0000-0002-6269-4234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2020-10, Vol.293 (2), p.495-519 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_2260281315 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Alternatives Analysis Bayesian analysis Bayesian statistical decision theory Business and Management Combinatorics Decision making Expected values Mathematical optimization Multiple criteria decision making Multiple criterion Operations research Operations Research/Decision Theory Ranking S.i.: Mcdm 2017 Theory of Computation Utility functions |
title | Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20criteria%20weight%20distributions%20in%20multiple%20criteria%20decision%20making:%20a%20Bayesian%20approach&rft.jtitle=Annals%20of%20operations%20research&rft.au=Yet,%20Barbaros&rft.date=2020-10-01&rft.volume=293&rft.issue=2&rft.spage=495&rft.epage=519&rft.pages=495-519&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-019-03313-z&rft_dat=%3Cgale_proqu%3EA637749022%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260281315&rft_id=info:pmid/&rft_galeid=A637749022&rfr_iscdi=true |