Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy
Expansion of single Shockley stacking faults (SSFs) during forward current operation is an important issue, because it decreases the reliability of 4H-SiC bipolar devices. In this paper, we propose a method for analyzing SSF dynamics based on free energy under current conduction, temperature, and re...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2019-07, Vol.963, p.263-267 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | Materials science forum |
container_volume | 963 |
creator | Goryu, Akihiro Hirohata, Kenji Nishio, Johji Kano, Akira Ota, Chiharu Okada, Aoi Kato, Mitsuaki |
description | Expansion of single Shockley stacking faults (SSFs) during forward current operation is an important issue, because it decreases the reliability of 4H-SiC bipolar devices. In this paper, we propose a method for analyzing SSF dynamics based on free energy under current conduction, temperature, and resolved shear stress conditions. The driving force for dislocation dissociation reactions and formation of SSFs is incorporated into the free energy function, including chemical potential, stacking fault energy, crystallographic energy, gradient energy and elastic strain energy. The net energy gain of the chemical potential was calculated as a function of temperature and current conduction through use of the a TCAD device simulator based on the Boltzmann equation, Poisson equation and the current continuity equation concerning electron and hole distributions with self-consistency. It was confirmed that SSF dynamics can be simulated by the proposed method. It was also found that SSF formation can be attributed to quantum well variation in which electrons in n-type 4H–SiC enter SSF-induced quantum well states to lower the energy of the dislocation system. |
doi_str_mv | 10.4028/www.scientific.net/MSF.963.263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260271569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260271569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-d71d051e9ab01e4e9f9cf06a1842d76908c939eaaea86e8bf1cf4abea6996223</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_ISB415qkbdrciHNuTpgf0N2HLD3dol06k47Zf29kwm69OnDOy_NyHoRuKIlTworb_X4fe23AdqY2OrbQ3b6U01jwJGY8OUEDyjmLRJ6xUzQgLMuiLM35Obrw_oOQhBaUD9D6sbdqY7THI6ua3huP2xqXxq4awOW61Z8N9LjslP4MOzxVu6bDk--tst60FhuL01lUmjF-j0z0ih9NWwF-UB4qHM5TB4AnFtyqv0RntWo8XP3NIVpMJ4vxLJq_PT2PR_NIs5wmUZXTimQUhFoSCimIWuiacEWLlFU5F6TQIhGgFKiCQ7Gsqa5TtQTFheCMJUN0fcBuXfu1A9_Jj3bnwmteMsZJ6Mi4CKm7Q0q71nsHtdw6s1Gul5TIX7kyyJVHuTLIlUGuDHJlkBsA9wdA54KJDvT62PNPxA8VJ4rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260271569</pqid></control><display><type>article</type><title>Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy</title><source>Scientific.net Journals</source><creator>Goryu, Akihiro ; Hirohata, Kenji ; Nishio, Johji ; Kano, Akira ; Ota, Chiharu ; Okada, Aoi ; Kato, Mitsuaki</creator><creatorcontrib>Goryu, Akihiro ; Hirohata, Kenji ; Nishio, Johji ; Kano, Akira ; Ota, Chiharu ; Okada, Aoi ; Kato, Mitsuaki</creatorcontrib><description>Expansion of single Shockley stacking faults (SSFs) during forward current operation is an important issue, because it decreases the reliability of 4H-SiC bipolar devices. In this paper, we propose a method for analyzing SSF dynamics based on free energy under current conduction, temperature, and resolved shear stress conditions. The driving force for dislocation dissociation reactions and formation of SSFs is incorporated into the free energy function, including chemical potential, stacking fault energy, crystallographic energy, gradient energy and elastic strain energy. The net energy gain of the chemical potential was calculated as a function of temperature and current conduction through use of the a TCAD device simulator based on the Boltzmann equation, Poisson equation and the current continuity equation concerning electron and hole distributions with self-consistency. It was confirmed that SSF dynamics can be simulated by the proposed method. It was also found that SSF formation can be attributed to quantum well variation in which electrons in n-type 4H–SiC enter SSF-induced quantum well states to lower the energy of the dislocation system.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.963.263</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Boltzmann transport equation ; Chemical potential ; Continuity equation ; Crystallography ; Dislocations ; Driving conditions ; Energy ; Free energy ; Mathematical analysis ; Organic chemistry ; Poisson equation ; Quantum wells ; Shear stress ; Stacking fault energy ; Strain</subject><ispartof>Materials science forum, 2019-07, Vol.963, p.263-267</ispartof><rights>2019 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2713-d71d051e9ab01e4e9f9cf06a1842d76908c939eaaea86e8bf1cf4abea6996223</citedby><cites>FETCH-LOGICAL-c2713-d71d051e9ab01e4e9f9cf06a1842d76908c939eaaea86e8bf1cf4abea6996223</cites><orcidid>0000-0002-9691-2308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4682?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Goryu, Akihiro</creatorcontrib><creatorcontrib>Hirohata, Kenji</creatorcontrib><creatorcontrib>Nishio, Johji</creatorcontrib><creatorcontrib>Kano, Akira</creatorcontrib><creatorcontrib>Ota, Chiharu</creatorcontrib><creatorcontrib>Okada, Aoi</creatorcontrib><creatorcontrib>Kato, Mitsuaki</creatorcontrib><title>Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy</title><title>Materials science forum</title><description>Expansion of single Shockley stacking faults (SSFs) during forward current operation is an important issue, because it decreases the reliability of 4H-SiC bipolar devices. In this paper, we propose a method for analyzing SSF dynamics based on free energy under current conduction, temperature, and resolved shear stress conditions. The driving force for dislocation dissociation reactions and formation of SSFs is incorporated into the free energy function, including chemical potential, stacking fault energy, crystallographic energy, gradient energy and elastic strain energy. The net energy gain of the chemical potential was calculated as a function of temperature and current conduction through use of the a TCAD device simulator based on the Boltzmann equation, Poisson equation and the current continuity equation concerning electron and hole distributions with self-consistency. It was confirmed that SSF dynamics can be simulated by the proposed method. It was also found that SSF formation can be attributed to quantum well variation in which electrons in n-type 4H–SiC enter SSF-induced quantum well states to lower the energy of the dislocation system.</description><subject>Boltzmann transport equation</subject><subject>Chemical potential</subject><subject>Continuity equation</subject><subject>Crystallography</subject><subject>Dislocations</subject><subject>Driving conditions</subject><subject>Energy</subject><subject>Free energy</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Poisson equation</subject><subject>Quantum wells</subject><subject>Shear stress</subject><subject>Stacking fault energy</subject><subject>Strain</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkF1LwzAUhoMoOKf_ISB415qkbdrciHNuTpgf0N2HLD3dol06k47Zf29kwm69OnDOy_NyHoRuKIlTworb_X4fe23AdqY2OrbQ3b6U01jwJGY8OUEDyjmLRJ6xUzQgLMuiLM35Obrw_oOQhBaUD9D6sbdqY7THI6ua3huP2xqXxq4awOW61Z8N9LjslP4MOzxVu6bDk--tst60FhuL01lUmjF-j0z0ih9NWwF-UB4qHM5TB4AnFtyqv0RntWo8XP3NIVpMJ4vxLJq_PT2PR_NIs5wmUZXTimQUhFoSCimIWuiacEWLlFU5F6TQIhGgFKiCQ7Gsqa5TtQTFheCMJUN0fcBuXfu1A9_Jj3bnwmteMsZJ6Mi4CKm7Q0q71nsHtdw6s1Gul5TIX7kyyJVHuTLIlUGuDHJlkBsA9wdA54KJDvT62PNPxA8VJ4rg</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Goryu, Akihiro</creator><creator>Hirohata, Kenji</creator><creator>Nishio, Johji</creator><creator>Kano, Akira</creator><creator>Ota, Chiharu</creator><creator>Okada, Aoi</creator><creator>Kato, Mitsuaki</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9691-2308</orcidid></search><sort><creationdate>20190719</creationdate><title>Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy</title><author>Goryu, Akihiro ; Hirohata, Kenji ; Nishio, Johji ; Kano, Akira ; Ota, Chiharu ; Okada, Aoi ; Kato, Mitsuaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-d71d051e9ab01e4e9f9cf06a1842d76908c939eaaea86e8bf1cf4abea6996223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boltzmann transport equation</topic><topic>Chemical potential</topic><topic>Continuity equation</topic><topic>Crystallography</topic><topic>Dislocations</topic><topic>Driving conditions</topic><topic>Energy</topic><topic>Free energy</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Poisson equation</topic><topic>Quantum wells</topic><topic>Shear stress</topic><topic>Stacking fault energy</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goryu, Akihiro</creatorcontrib><creatorcontrib>Hirohata, Kenji</creatorcontrib><creatorcontrib>Nishio, Johji</creatorcontrib><creatorcontrib>Kano, Akira</creatorcontrib><creatorcontrib>Ota, Chiharu</creatorcontrib><creatorcontrib>Okada, Aoi</creatorcontrib><creatorcontrib>Kato, Mitsuaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goryu, Akihiro</au><au>Hirohata, Kenji</au><au>Nishio, Johji</au><au>Kano, Akira</au><au>Ota, Chiharu</au><au>Okada, Aoi</au><au>Kato, Mitsuaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy</atitle><jtitle>Materials science forum</jtitle><date>2019-07-19</date><risdate>2019</risdate><volume>963</volume><spage>263</spage><epage>267</epage><pages>263-267</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Expansion of single Shockley stacking faults (SSFs) during forward current operation is an important issue, because it decreases the reliability of 4H-SiC bipolar devices. In this paper, we propose a method for analyzing SSF dynamics based on free energy under current conduction, temperature, and resolved shear stress conditions. The driving force for dislocation dissociation reactions and formation of SSFs is incorporated into the free energy function, including chemical potential, stacking fault energy, crystallographic energy, gradient energy and elastic strain energy. The net energy gain of the chemical potential was calculated as a function of temperature and current conduction through use of the a TCAD device simulator based on the Boltzmann equation, Poisson equation and the current continuity equation concerning electron and hole distributions with self-consistency. It was confirmed that SSF dynamics can be simulated by the proposed method. It was also found that SSF formation can be attributed to quantum well variation in which electrons in n-type 4H–SiC enter SSF-induced quantum well states to lower the energy of the dislocation system.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.963.263</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9691-2308</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2019-07, Vol.963, p.263-267 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_2260271569 |
source | Scientific.net Journals |
subjects | Boltzmann transport equation Chemical potential Continuity equation Crystallography Dislocations Driving conditions Energy Free energy Mathematical analysis Organic chemistry Poisson equation Quantum wells Shear stress Stacking fault energy Strain |
title | Dynamics Analysis of Single Shockley Stacking Fault Expansion in 4H-SiC P-i-N Diode Based on Free Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20Analysis%20of%20Single%20Shockley%20Stacking%20Fault%20Expansion%20in%204H-SiC%20P-i-N%20Diode%20Based%20on%20Free%20Energy&rft.jtitle=Materials%20science%20forum&rft.au=Goryu,%20Akihiro&rft.date=2019-07-19&rft.volume=963&rft.spage=263&rft.epage=267&rft.pages=263-267&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.963.263&rft_dat=%3Cproquest_cross%3E2260271569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260271569&rft_id=info:pmid/&rfr_iscdi=true |