Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride

In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-09, Vol.53 (18), p.13018-13029
Hauptverfasser: Kharlamova, Marianna V., Kramberger, Christian, Domanov, Oleg, Mittelberger, Andreas, Yanagi, Kazuhiro, Pichler, Thomas, Eder, Dominik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13029
container_issue 18
container_start_page 13018
container_title Journal of materials science
container_volume 53
creator Kharlamova, Marianna V.
Kramberger, Christian
Domanov, Oleg
Mittelberger, Andreas
Yanagi, Kazuhiro
Pichler, Thomas
Eder, Dominik
description In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p -doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e − per carbon and 0.0406 e − /Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.
doi_str_mv 10.1007/s10853-018-2575-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2260267257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544544995</galeid><sourcerecordid>A544544995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-467495dc6bba5d6b127990988d068631fa8ca05b4c81011f2681edaf422816ed3</originalsourceid><addsrcrecordid>eNp1Uc1uFSEYJcYmXqsP4I7ElQsqMAPDLJvG2iZNTNSuCcN83FJn4ApM67xHH1huxmi6MJCQ7_xBOAi9Y_SMUdp9zIwq0RDKFOGiE2R9gXZMdA1pFW1eoh2lnBPeSvYKvc75nlIqOs526OkS0uzxBA8wYQh7HwCSD3scHZ6hmGny1peV5JgKjH8hnKtmAvJYpwpbk4YYcDAhlmWAjIe1hllzyMtkiq9UjXPwSEyJMyl33v7ANq25huUjlf30AAnbuykmP8IbdOIqA2__nKfo9vLT94srcvPl8_XF-Q2xjeoLaWXX9mK0chiMGOXAeNf3tFdqpFLJhjmjrKFiaK1ilDHHpWIwGtdyrpiEsTlF77fcQ4o_F8hF38clhXql5lxSLrv6l1V1tqn2ZgLtg4slGVvXCLO3MYDzFT8XbVt334tq-PDMUDUFfpW9WXLW19--PteyTWtTzDmB04fkZ5NWzag-Nqu3ZnVtVh-b1Wv18M2TD8eqIP179v9NvwEwCKiv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260267257</pqid></control><display><type>article</type><title>Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kharlamova, Marianna V. ; Kramberger, Christian ; Domanov, Oleg ; Mittelberger, Andreas ; Yanagi, Kazuhiro ; Pichler, Thomas ; Eder, Dominik</creator><creatorcontrib>Kharlamova, Marianna V. ; Kramberger, Christian ; Domanov, Oleg ; Mittelberger, Andreas ; Yanagi, Kazuhiro ; Pichler, Thomas ; Eder, Dominik</creatorcontrib><description>In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p -doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e − per carbon and 0.0406 e − /Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2575-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Channels ; Characterization and Evaluation of Materials ; Charge density ; Charge transfer ; Chemistry and Materials Science ; Chloride ; Classical Mechanics ; Crystallography and Scattering Methods ; Doping ; Electron transport ; Electronic Materials ; Electrons ; Encapsulation ; Fermi level ; Halides ; Materials Science ; Metallicity ; Nanoelectronics ; Nanotechnology devices ; Nanotubes ; Photoelectron spectroscopy ; Photoelectrons ; Polymer Sciences ; Raman spectroscopy ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Silver chloride ; Single wall carbon nanotubes ; Solid Mechanics ; Spectrum analysis ; Transmission electron microscopy ; X-ray spectroscopy</subject><ispartof>Journal of materials science, 2018-09, Vol.53 (18), p.13018-13029</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-467495dc6bba5d6b127990988d068631fa8ca05b4c81011f2681edaf422816ed3</citedby><cites>FETCH-LOGICAL-c389t-467495dc6bba5d6b127990988d068631fa8ca05b4c81011f2681edaf422816ed3</cites><orcidid>0000-0002-2772-3765 ; 0000-0002-5395-564X ; 0000-0003-1029-7138 ; 0000-0002-7609-1493 ; 0000-0001-9267-5184 ; 0000-0001-5377-9896 ; 0000-0002-5127-4496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2575-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2575-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kharlamova, Marianna V.</creatorcontrib><creatorcontrib>Kramberger, Christian</creatorcontrib><creatorcontrib>Domanov, Oleg</creatorcontrib><creatorcontrib>Mittelberger, Andreas</creatorcontrib><creatorcontrib>Yanagi, Kazuhiro</creatorcontrib><creatorcontrib>Pichler, Thomas</creatorcontrib><creatorcontrib>Eder, Dominik</creatorcontrib><title>Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p -doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e − per carbon and 0.0406 e − /Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.</description><subject>Carbon</subject><subject>Channels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge density</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Chloride</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Doping</subject><subject>Electron transport</subject><subject>Electronic Materials</subject><subject>Electrons</subject><subject>Encapsulation</subject><subject>Fermi level</subject><subject>Halides</subject><subject>Materials Science</subject><subject>Metallicity</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Nanotubes</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Silver chloride</subject><subject>Single wall carbon nanotubes</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Transmission electron microscopy</subject><subject>X-ray spectroscopy</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1Uc1uFSEYJcYmXqsP4I7ElQsqMAPDLJvG2iZNTNSuCcN83FJn4ApM67xHH1huxmi6MJCQ7_xBOAi9Y_SMUdp9zIwq0RDKFOGiE2R9gXZMdA1pFW1eoh2lnBPeSvYKvc75nlIqOs526OkS0uzxBA8wYQh7HwCSD3scHZ6hmGny1peV5JgKjH8hnKtmAvJYpwpbk4YYcDAhlmWAjIe1hllzyMtkiq9UjXPwSEyJMyl33v7ANq25huUjlf30AAnbuykmP8IbdOIqA2__nKfo9vLT94srcvPl8_XF-Q2xjeoLaWXX9mK0chiMGOXAeNf3tFdqpFLJhjmjrKFiaK1ilDHHpWIwGtdyrpiEsTlF77fcQ4o_F8hF38clhXql5lxSLrv6l1V1tqn2ZgLtg4slGVvXCLO3MYDzFT8XbVt334tq-PDMUDUFfpW9WXLW19--PteyTWtTzDmB04fkZ5NWzag-Nqu3ZnVtVh-b1Wv18M2TD8eqIP179v9NvwEwCKiv</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Kharlamova, Marianna V.</creator><creator>Kramberger, Christian</creator><creator>Domanov, Oleg</creator><creator>Mittelberger, Andreas</creator><creator>Yanagi, Kazuhiro</creator><creator>Pichler, Thomas</creator><creator>Eder, Dominik</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2772-3765</orcidid><orcidid>https://orcid.org/0000-0002-5395-564X</orcidid><orcidid>https://orcid.org/0000-0003-1029-7138</orcidid><orcidid>https://orcid.org/0000-0002-7609-1493</orcidid><orcidid>https://orcid.org/0000-0001-9267-5184</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid><orcidid>https://orcid.org/0000-0002-5127-4496</orcidid></search><sort><creationdate>20180901</creationdate><title>Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride</title><author>Kharlamova, Marianna V. ; Kramberger, Christian ; Domanov, Oleg ; Mittelberger, Andreas ; Yanagi, Kazuhiro ; Pichler, Thomas ; Eder, Dominik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-467495dc6bba5d6b127990988d068631fa8ca05b4c81011f2681edaf422816ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Channels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge density</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Chloride</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Doping</topic><topic>Electron transport</topic><topic>Electronic Materials</topic><topic>Electrons</topic><topic>Encapsulation</topic><topic>Fermi level</topic><topic>Halides</topic><topic>Materials Science</topic><topic>Metallicity</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Nanotubes</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Silver chloride</topic><topic>Single wall carbon nanotubes</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Transmission electron microscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kharlamova, Marianna V.</creatorcontrib><creatorcontrib>Kramberger, Christian</creatorcontrib><creatorcontrib>Domanov, Oleg</creatorcontrib><creatorcontrib>Mittelberger, Andreas</creatorcontrib><creatorcontrib>Yanagi, Kazuhiro</creatorcontrib><creatorcontrib>Pichler, Thomas</creatorcontrib><creatorcontrib>Eder, Dominik</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kharlamova, Marianna V.</au><au>Kramberger, Christian</au><au>Domanov, Oleg</au><au>Mittelberger, Andreas</au><au>Yanagi, Kazuhiro</au><au>Pichler, Thomas</au><au>Eder, Dominik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>53</volume><issue>18</issue><spage>13018</spage><epage>13029</epage><pages>13018-13029</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p -doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e − per carbon and 0.0406 e − /Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2575-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2772-3765</orcidid><orcidid>https://orcid.org/0000-0002-5395-564X</orcidid><orcidid>https://orcid.org/0000-0003-1029-7138</orcidid><orcidid>https://orcid.org/0000-0002-7609-1493</orcidid><orcidid>https://orcid.org/0000-0001-9267-5184</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid><orcidid>https://orcid.org/0000-0002-5127-4496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-09, Vol.53 (18), p.13018-13029
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2260267257
source SpringerLink Journals - AutoHoldings
subjects Carbon
Channels
Characterization and Evaluation of Materials
Charge density
Charge transfer
Chemistry and Materials Science
Chloride
Classical Mechanics
Crystallography and Scattering Methods
Doping
Electron transport
Electronic Materials
Electrons
Encapsulation
Fermi level
Halides
Materials Science
Metallicity
Nanoelectronics
Nanotechnology devices
Nanotubes
Photoelectron spectroscopy
Photoelectrons
Polymer Sciences
Raman spectroscopy
Scanning electron microscopy
Scanning transmission electron microscopy
Silver chloride
Single wall carbon nanotubes
Solid Mechanics
Spectrum analysis
Transmission electron microscopy
X-ray spectroscopy
title Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20level%20engineering%20of%20metallicity-sorted%20metallic%20single-walled%20carbon%20nanotubes%20by%20encapsulation%20of%20few-atom-thick%20crystals%20of%20silver%20chloride&rft.jtitle=Journal%20of%20materials%20science&rft.au=Kharlamova,%20Marianna%20V.&rft.date=2018-09-01&rft.volume=53&rft.issue=18&rft.spage=13018&rft.epage=13029&rft.pages=13018-13029&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2575-y&rft_dat=%3Cgale_proqu%3EA544544995%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260267257&rft_id=info:pmid/&rft_galeid=A544544995&rfr_iscdi=true