An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
Hauptverfasser: Hunt, Xin J, Abbey, Ralph, Tharrington, Ricky, Huiskens, Joost, Wesdorp, Nina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hunt, Xin J
Abbey, Ralph
Tharrington, Ricky
Huiskens, Joost
Wesdorp, Nina
description Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2260230421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260230421</sourcerecordid><originalsourceid>FETCH-proquest_journals_22602304213</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_eNBaGN-otZVKEmwXtGghlq8aU8dmxqK_z6APCC6cC-dyR8xBIXxvGSBOmGtMxTnHaIFhKBx2jFuIUy_urw21lkrIyEjVwposne23Jbpo6KX0HRKlIZNP0rAjW5ghZOAg7Q12qqQa0uFAd3pwJ1lL-56x8aWoDbk_Ttk82exXW6_T6tGTsXmlet0OKkeMOAoeoC_-W30AD81Cfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260230421</pqid></control><display><type>article</type><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><source>Free E- Journals</source><creator>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</creator><creatorcontrib>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</creatorcontrib><description>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Fatalities ; Image detection ; Interactive systems ; Metastasis ; Object recognition</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Hunt, Xin J</creatorcontrib><creatorcontrib>Abbey, Ralph</creatorcontrib><creatorcontrib>Tharrington, Ricky</creatorcontrib><creatorcontrib>Huiskens, Joost</creatorcontrib><creatorcontrib>Wesdorp, Nina</creatorcontrib><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><title>arXiv.org</title><description>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</description><subject>Cancer</subject><subject>Fatalities</subject><subject>Image detection</subject><subject>Interactive systems</subject><subject>Metastasis</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKgkAURYcgSMp_eNBaGN-otZVKEmwXtGghlq8aU8dmxqK_z6APCC6cC-dyR8xBIXxvGSBOmGtMxTnHaIFhKBx2jFuIUy_urw21lkrIyEjVwposne23Jbpo6KX0HRKlIZNP0rAjW5ghZOAg7Q12qqQa0uFAd3pwJ1lL-56x8aWoDbk_Ttk82exXW6_T6tGTsXmlet0OKkeMOAoeoC_-W30AD81Cfg</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Hunt, Xin J</creator><creator>Abbey, Ralph</creator><creator>Tharrington, Ricky</creator><creator>Huiskens, Joost</creator><creator>Wesdorp, Nina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190717</creationdate><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><author>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22602304213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Fatalities</topic><topic>Image detection</topic><topic>Interactive systems</topic><topic>Metastasis</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Xin J</creatorcontrib><creatorcontrib>Abbey, Ralph</creatorcontrib><creatorcontrib>Tharrington, Ricky</creatorcontrib><creatorcontrib>Huiskens, Joost</creatorcontrib><creatorcontrib>Wesdorp, Nina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Xin J</au><au>Abbey, Ralph</au><au>Tharrington, Ricky</au><au>Huiskens, Joost</au><au>Wesdorp, Nina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</atitle><jtitle>arXiv.org</jtitle><date>2019-07-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2260230421
source Free E- Journals
subjects Cancer
Fatalities
Image detection
Interactive systems
Metastasis
Object recognition
title An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20AI-Augmented%20Lesion%20Detection%20Framework%20For%20Liver%20Metastases%20With%20Model%20Interpretability&rft.jtitle=arXiv.org&rft.au=Hunt,%20Xin%20J&rft.date=2019-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2260230421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260230421&rft_id=info:pmid/&rfr_iscdi=true