An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hunt, Xin J Abbey, Ralph Tharrington, Ricky Huiskens, Joost Wesdorp, Nina |
description | Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2260230421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260230421</sourcerecordid><originalsourceid>FETCH-proquest_journals_22602304213</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_eNBaGN-otZVKEmwXtGghlq8aU8dmxqK_z6APCC6cC-dyR8xBIXxvGSBOmGtMxTnHaIFhKBx2jFuIUy_urw21lkrIyEjVwposne23Jbpo6KX0HRKlIZNP0rAjW5ghZOAg7Q12qqQa0uFAd3pwJ1lL-56x8aWoDbk_Ttk82exXW6_T6tGTsXmlet0OKkeMOAoeoC_-W30AD81Cfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260230421</pqid></control><display><type>article</type><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><source>Free E- Journals</source><creator>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</creator><creatorcontrib>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</creatorcontrib><description>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Fatalities ; Image detection ; Interactive systems ; Metastasis ; Object recognition</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Hunt, Xin J</creatorcontrib><creatorcontrib>Abbey, Ralph</creatorcontrib><creatorcontrib>Tharrington, Ricky</creatorcontrib><creatorcontrib>Huiskens, Joost</creatorcontrib><creatorcontrib>Wesdorp, Nina</creatorcontrib><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><title>arXiv.org</title><description>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</description><subject>Cancer</subject><subject>Fatalities</subject><subject>Image detection</subject><subject>Interactive systems</subject><subject>Metastasis</subject><subject>Object recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKgkAURYcgSMp_eNBaGN-otZVKEmwXtGghlq8aU8dmxqK_z6APCC6cC-dyR8xBIXxvGSBOmGtMxTnHaIFhKBx2jFuIUy_urw21lkrIyEjVwposne23Jbpo6KX0HRKlIZNP0rAjW5ghZOAg7Q12qqQa0uFAd3pwJ1lL-56x8aWoDbk_Ttk82exXW6_T6tGTsXmlet0OKkeMOAoeoC_-W30AD81Cfg</recordid><startdate>20190717</startdate><enddate>20190717</enddate><creator>Hunt, Xin J</creator><creator>Abbey, Ralph</creator><creator>Tharrington, Ricky</creator><creator>Huiskens, Joost</creator><creator>Wesdorp, Nina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190717</creationdate><title>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</title><author>Hunt, Xin J ; Abbey, Ralph ; Tharrington, Ricky ; Huiskens, Joost ; Wesdorp, Nina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22602304213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Fatalities</topic><topic>Image detection</topic><topic>Interactive systems</topic><topic>Metastasis</topic><topic>Object recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Xin J</creatorcontrib><creatorcontrib>Abbey, Ralph</creatorcontrib><creatorcontrib>Tharrington, Ricky</creatorcontrib><creatorcontrib>Huiskens, Joost</creatorcontrib><creatorcontrib>Wesdorp, Nina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Xin J</au><au>Abbey, Ralph</au><au>Tharrington, Ricky</au><au>Huiskens, Joost</au><au>Wesdorp, Nina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability</atitle><jtitle>arXiv.org</jtitle><date>2019-07-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths worldwide. Most CRC deaths are the result of progression of metastases. The assessment of metastases is done using the RECIST criterion, which is time consuming and subjective, as clinicians need to manually measure anatomical tumor sizes. AI has many successes in image object detection, but often suffers because the models used are not interpretable, leading to issues in trust and implementation in the clinical setting. We propose a framework for an AI-augmented system in which an interactive AI system assists clinicians in the metastasis assessment. We include model interpretability to give explanations of the reasoning of the underlying models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2260230421 |
source | Free E- Journals |
subjects | Cancer Fatalities Image detection Interactive systems Metastasis Object recognition |
title | An AI-Augmented Lesion Detection Framework For Liver Metastases With Model Interpretability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20AI-Augmented%20Lesion%20Detection%20Framework%20For%20Liver%20Metastases%20With%20Model%20Interpretability&rft.jtitle=arXiv.org&rft.au=Hunt,%20Xin%20J&rft.date=2019-07-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2260230421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260230421&rft_id=info:pmid/&rfr_iscdi=true |