Stay clean: direct steam exposure to manage biofouling risks
Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species:...
Gespeichert in:
Veröffentlicht in: | Marine pollution bulletin 2019-05, Vol.142, p.465-469 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | |
container_start_page | 465 |
container_title | Marine pollution bulletin |
container_volume | 142 |
creator | Joyce, Patrick W.S. Cuthbert, Ross N. Kregting, Louise Crane, Kate Vong, Gina Y.W. Cunningham, Eoghan M. Dick, Jaimie T.A. Coughlan, Neil E. |
description | Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species: Mytilus edulis; Magallana gigas; Semibalanus balanoides; Fucus vesiculosus; and an Ulva sp. Total mortality occurred at 60-sec of steam exposure for M. edulis and juvenile M. gigas, at 30-sec for S. balanoides, while 300-sec was required for adult M. gigas. Application of steam reduced the biomass of F. vesiculosus and significantly reduced Ulva sp. biomass, with complete degradation being observed for Ulva sp. following 120-sec of exposure. Accordingly, it appears that steam exposure can cause mortality of biofouling organisms through thermal shock. Although preliminary, our novel and promising results suggest that steam applications could potentially be used to decontaminate niche areas and equipment.
•Steam exposure can cause mortality and biodegradation through thermal shock.•Direct exposure to steam caused total mortality of biofouling bivalve species.•Complete mortality can be achieved with short exposure times of ≤60 sec.•Larger-bodied bivalves, e.g. adult Magallana gigas, required longer exposure times.•Steam significantly reduced the biomass of Ulva sp. |
doi_str_mv | 10.1016/j.marpolbul.2019.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260091621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X19302723</els_id><sourcerecordid>2260091621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7e2ae4bc20be5592fd84a62d6aa8d0414f1b3a41111e6fea0eee5d6465d2ae7d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqXwF8ASc8LZcZwEsVQVX1IlBkBis5z4UqWkcbETRP89rlq6cjfc8n7oHkKuGMQMmLxZxivt1rYthzbmwIoYRAyMHZExy7MiShKZHJMxAE-jhMuPETnzfgkAGc_YKRkljCdh0zG5e-31hlYt6u6WmsZh1VPfo15R_FlbPzikvaUr3ekF0rKxtR3apltQ1_hPf05Oat16vNjfCXl_uH-bPUXzl8fn2XQeVULkfZQh1yjKikOJaVrw2uRCS26k1rkBwUTNykQLFgZljRoQMTVSyNQEY2aSCbne5a6d_RrQ92ppB9eFSsW5BCiY5Cyosp2qctZ7h7VauyZg2igGaktNLdWBmtpSUyBUoBacl_v8oVyhOfj-MAXBdCfA8OV3g075qsGuwh0xZWzzb8kvmhKCcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260091621</pqid></control><display><type>article</type><title>Stay clean: direct steam exposure to manage biofouling risks</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Joyce, Patrick W.S. ; Cuthbert, Ross N. ; Kregting, Louise ; Crane, Kate ; Vong, Gina Y.W. ; Cunningham, Eoghan M. ; Dick, Jaimie T.A. ; Coughlan, Neil E.</creator><creatorcontrib>Joyce, Patrick W.S. ; Cuthbert, Ross N. ; Kregting, Louise ; Crane, Kate ; Vong, Gina Y.W. ; Cunningham, Eoghan M. ; Dick, Jaimie T.A. ; Coughlan, Neil E.</creatorcontrib><description>Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species: Mytilus edulis; Magallana gigas; Semibalanus balanoides; Fucus vesiculosus; and an Ulva sp. Total mortality occurred at 60-sec of steam exposure for M. edulis and juvenile M. gigas, at 30-sec for S. balanoides, while 300-sec was required for adult M. gigas. Application of steam reduced the biomass of F. vesiculosus and significantly reduced Ulva sp. biomass, with complete degradation being observed for Ulva sp. following 120-sec of exposure. Accordingly, it appears that steam exposure can cause mortality of biofouling organisms through thermal shock. Although preliminary, our novel and promising results suggest that steam applications could potentially be used to decontaminate niche areas and equipment.
•Steam exposure can cause mortality and biodegradation through thermal shock.•Direct exposure to steam caused total mortality of biofouling bivalve species.•Complete mortality can be achieved with short exposure times of ≤60 sec.•Larger-bodied bivalves, e.g. adult Magallana gigas, required longer exposure times.•Steam significantly reduced the biomass of Ulva sp.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2019.04.011</identifier><identifier>PMID: 31232325</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Aquatic Organisms ; Barnacle ; Biodegradation ; Biofouling ; Biofouling - prevention & control ; Biomass ; Biosecurity ; Bivalve ; Decontamination ; Economics ; Exposure ; Fouling ; Fucus ; Fucus vesiculosus ; Invasive species ; Labour ; Macroalgae ; Marine molluscs ; Marine organisms ; Mortality ; Mytilus edulis ; Niches ; Ostreidae ; Procedures ; Risk management ; Semibalanus balanoides ; Spread-prevention ; Steam ; Thermal shock ; Thoracica ; Time Factors ; Total mortality ; Ulva</subject><ispartof>Marine pollution bulletin, 2019-05, Vol.142, p.465-469</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7e2ae4bc20be5592fd84a62d6aa8d0414f1b3a41111e6fea0eee5d6465d2ae7d3</citedby><cites>FETCH-LOGICAL-c448t-7e2ae4bc20be5592fd84a62d6aa8d0414f1b3a41111e6fea0eee5d6465d2ae7d3</cites><orcidid>0000-0001-5597-3238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpolbul.2019.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31232325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joyce, Patrick W.S.</creatorcontrib><creatorcontrib>Cuthbert, Ross N.</creatorcontrib><creatorcontrib>Kregting, Louise</creatorcontrib><creatorcontrib>Crane, Kate</creatorcontrib><creatorcontrib>Vong, Gina Y.W.</creatorcontrib><creatorcontrib>Cunningham, Eoghan M.</creatorcontrib><creatorcontrib>Dick, Jaimie T.A.</creatorcontrib><creatorcontrib>Coughlan, Neil E.</creatorcontrib><title>Stay clean: direct steam exposure to manage biofouling risks</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species: Mytilus edulis; Magallana gigas; Semibalanus balanoides; Fucus vesiculosus; and an Ulva sp. Total mortality occurred at 60-sec of steam exposure for M. edulis and juvenile M. gigas, at 30-sec for S. balanoides, while 300-sec was required for adult M. gigas. Application of steam reduced the biomass of F. vesiculosus and significantly reduced Ulva sp. biomass, with complete degradation being observed for Ulva sp. following 120-sec of exposure. Accordingly, it appears that steam exposure can cause mortality of biofouling organisms through thermal shock. Although preliminary, our novel and promising results suggest that steam applications could potentially be used to decontaminate niche areas and equipment.
•Steam exposure can cause mortality and biodegradation through thermal shock.•Direct exposure to steam caused total mortality of biofouling bivalve species.•Complete mortality can be achieved with short exposure times of ≤60 sec.•Larger-bodied bivalves, e.g. adult Magallana gigas, required longer exposure times.•Steam significantly reduced the biomass of Ulva sp.</description><subject>Animals</subject><subject>Aquatic Organisms</subject><subject>Barnacle</subject><subject>Biodegradation</subject><subject>Biofouling</subject><subject>Biofouling - prevention & control</subject><subject>Biomass</subject><subject>Biosecurity</subject><subject>Bivalve</subject><subject>Decontamination</subject><subject>Economics</subject><subject>Exposure</subject><subject>Fouling</subject><subject>Fucus</subject><subject>Fucus vesiculosus</subject><subject>Invasive species</subject><subject>Labour</subject><subject>Macroalgae</subject><subject>Marine molluscs</subject><subject>Marine organisms</subject><subject>Mortality</subject><subject>Mytilus edulis</subject><subject>Niches</subject><subject>Ostreidae</subject><subject>Procedures</subject><subject>Risk management</subject><subject>Semibalanus balanoides</subject><subject>Spread-prevention</subject><subject>Steam</subject><subject>Thermal shock</subject><subject>Thoracica</subject><subject>Time Factors</subject><subject>Total mortality</subject><subject>Ulva</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqXwF8ASc8LZcZwEsVQVX1IlBkBis5z4UqWkcbETRP89rlq6cjfc8n7oHkKuGMQMmLxZxivt1rYthzbmwIoYRAyMHZExy7MiShKZHJMxAE-jhMuPETnzfgkAGc_YKRkljCdh0zG5e-31hlYt6u6WmsZh1VPfo15R_FlbPzikvaUr3ekF0rKxtR3apltQ1_hPf05Oat16vNjfCXl_uH-bPUXzl8fn2XQeVULkfZQh1yjKikOJaVrw2uRCS26k1rkBwUTNykQLFgZljRoQMTVSyNQEY2aSCbne5a6d_RrQ92ppB9eFSsW5BCiY5Cyosp2qctZ7h7VauyZg2igGaktNLdWBmtpSUyBUoBacl_v8oVyhOfj-MAXBdCfA8OV3g075qsGuwh0xZWzzb8kvmhKCcw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Joyce, Patrick W.S.</creator><creator>Cuthbert, Ross N.</creator><creator>Kregting, Louise</creator><creator>Crane, Kate</creator><creator>Vong, Gina Y.W.</creator><creator>Cunningham, Eoghan M.</creator><creator>Dick, Jaimie T.A.</creator><creator>Coughlan, Neil E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5597-3238</orcidid></search><sort><creationdate>201905</creationdate><title>Stay clean: direct steam exposure to manage biofouling risks</title><author>Joyce, Patrick W.S. ; Cuthbert, Ross N. ; Kregting, Louise ; Crane, Kate ; Vong, Gina Y.W. ; Cunningham, Eoghan M. ; Dick, Jaimie T.A. ; Coughlan, Neil E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7e2ae4bc20be5592fd84a62d6aa8d0414f1b3a41111e6fea0eee5d6465d2ae7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Aquatic Organisms</topic><topic>Barnacle</topic><topic>Biodegradation</topic><topic>Biofouling</topic><topic>Biofouling - prevention & control</topic><topic>Biomass</topic><topic>Biosecurity</topic><topic>Bivalve</topic><topic>Decontamination</topic><topic>Economics</topic><topic>Exposure</topic><topic>Fouling</topic><topic>Fucus</topic><topic>Fucus vesiculosus</topic><topic>Invasive species</topic><topic>Labour</topic><topic>Macroalgae</topic><topic>Marine molluscs</topic><topic>Marine organisms</topic><topic>Mortality</topic><topic>Mytilus edulis</topic><topic>Niches</topic><topic>Ostreidae</topic><topic>Procedures</topic><topic>Risk management</topic><topic>Semibalanus balanoides</topic><topic>Spread-prevention</topic><topic>Steam</topic><topic>Thermal shock</topic><topic>Thoracica</topic><topic>Time Factors</topic><topic>Total mortality</topic><topic>Ulva</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joyce, Patrick W.S.</creatorcontrib><creatorcontrib>Cuthbert, Ross N.</creatorcontrib><creatorcontrib>Kregting, Louise</creatorcontrib><creatorcontrib>Crane, Kate</creatorcontrib><creatorcontrib>Vong, Gina Y.W.</creatorcontrib><creatorcontrib>Cunningham, Eoghan M.</creatorcontrib><creatorcontrib>Dick, Jaimie T.A.</creatorcontrib><creatorcontrib>Coughlan, Neil E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joyce, Patrick W.S.</au><au>Cuthbert, Ross N.</au><au>Kregting, Louise</au><au>Crane, Kate</au><au>Vong, Gina Y.W.</au><au>Cunningham, Eoghan M.</au><au>Dick, Jaimie T.A.</au><au>Coughlan, Neil E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stay clean: direct steam exposure to manage biofouling risks</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2019-05</date><risdate>2019</risdate><volume>142</volume><spage>465</spage><epage>469</epage><pages>465-469</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>Biofouling by marine organisms can result in a variety of negative environmental and economic consequences, with decontamination procedures remaining problematic, costly and labour-intensive. Here, we examined the efficacy of direct steam exposure to induce mortality of selected biofouling species: Mytilus edulis; Magallana gigas; Semibalanus balanoides; Fucus vesiculosus; and an Ulva sp. Total mortality occurred at 60-sec of steam exposure for M. edulis and juvenile M. gigas, at 30-sec for S. balanoides, while 300-sec was required for adult M. gigas. Application of steam reduced the biomass of F. vesiculosus and significantly reduced Ulva sp. biomass, with complete degradation being observed for Ulva sp. following 120-sec of exposure. Accordingly, it appears that steam exposure can cause mortality of biofouling organisms through thermal shock. Although preliminary, our novel and promising results suggest that steam applications could potentially be used to decontaminate niche areas and equipment.
•Steam exposure can cause mortality and biodegradation through thermal shock.•Direct exposure to steam caused total mortality of biofouling bivalve species.•Complete mortality can be achieved with short exposure times of ≤60 sec.•Larger-bodied bivalves, e.g. adult Magallana gigas, required longer exposure times.•Steam significantly reduced the biomass of Ulva sp.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31232325</pmid><doi>10.1016/j.marpolbul.2019.04.011</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5597-3238</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-326X |
ispartof | Marine pollution bulletin, 2019-05, Vol.142, p.465-469 |
issn | 0025-326X 1879-3363 |
language | eng |
recordid | cdi_proquest_journals_2260091621 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Aquatic Organisms Barnacle Biodegradation Biofouling Biofouling - prevention & control Biomass Biosecurity Bivalve Decontamination Economics Exposure Fouling Fucus Fucus vesiculosus Invasive species Labour Macroalgae Marine molluscs Marine organisms Mortality Mytilus edulis Niches Ostreidae Procedures Risk management Semibalanus balanoides Spread-prevention Steam Thermal shock Thoracica Time Factors Total mortality Ulva |
title | Stay clean: direct steam exposure to manage biofouling risks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stay%20clean:%20direct%20steam%20exposure%20to%20manage%20biofouling%20risks&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Joyce,%20Patrick%20W.S.&rft.date=2019-05&rft.volume=142&rft.spage=465&rft.epage=469&rft.pages=465-469&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2019.04.011&rft_dat=%3Cproquest_cross%3E2260091621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260091621&rft_id=info:pmid/31232325&rft_els_id=S0025326X19302723&rfr_iscdi=true |