Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope

A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2019-06, Vol.58 (SD), p.SDDL06
Hauptverfasser: Shu, Yunyi, Hirai, Yoshikazu, Tsuchiya, Toshiyuki, Tabata, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue SD
container_start_page SDDL06
container_title Japanese Journal of Applied Physics
container_volume 58
creator Shu, Yunyi
Hirai, Yoshikazu
Tsuchiya, Toshiyuki
Tabata, Osamu
description A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.
doi_str_mv 10.7567/1347-4065/ab0dee
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260069716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260069716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwEvDqx7SdO0O8qmUxh4UM8hTZOZsjY16YT996ZU9KLw4PHe-31fwofQJYHbPOP5nKQsTxjwbC5LqLQ-QpOf1TGaAFCSsAWlp-gshDqOPGNkgsxau0b33iq5w8o1nW6D7K1rsXEeN67SSSN79W7bLXYGS3xNAGY42J1VEfLD3uvgWtlHftBI_GlLP4wHvD14F5Tr9Dk6MXIX9MV3n6K3h_vX5WOyeV4_Le82iWJQ9IlZqIoYRQitUinLUqtFZUougVeG0jLeSpJn8cxZoVUm8xwKSDUzTLPMKJlO0dXo23n3sdehF7Xb-zY-KSjlAHyREx4pGCkVvxe8NqLztpH-IAiIIU0xRCeG6MSYZpTMRol13a9nXctOZIV4WcVabYCLrjKRvfmD_df6C6D_hp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260069716</pqid></control><display><type>article</type><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creator><creatorcontrib>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creatorcontrib><description>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab0dee</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Compensation ; Elastic anisotropy ; Elastic properties ; Finite element method ; Matching ; Modulus of elasticity ; Resonators ; Silicon ; Single crystals ; Stiffness ; Tuning ; Vibratory gyroscopes</subject><ispartof>Japanese Journal of Applied Physics, 2019-06, Vol.58 (SD), p.SDDL06</ispartof><rights>2019 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</citedby><cites>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/1347-4065/ab0dee/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Shu, Yunyi</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</description><subject>Compensation</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Finite element method</subject><subject>Matching</subject><subject>Modulus of elasticity</subject><subject>Resonators</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Stiffness</subject><subject>Tuning</subject><subject>Vibratory gyroscopes</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwEvDqx7SdO0O8qmUxh4UM8hTZOZsjY16YT996ZU9KLw4PHe-31fwofQJYHbPOP5nKQsTxjwbC5LqLQ-QpOf1TGaAFCSsAWlp-gshDqOPGNkgsxau0b33iq5w8o1nW6D7K1rsXEeN67SSSN79W7bLXYGS3xNAGY42J1VEfLD3uvgWtlHftBI_GlLP4wHvD14F5Tr9Dk6MXIX9MV3n6K3h_vX5WOyeV4_Le82iWJQ9IlZqIoYRQitUinLUqtFZUougVeG0jLeSpJn8cxZoVUm8xwKSDUzTLPMKJlO0dXo23n3sdehF7Xb-zY-KSjlAHyREx4pGCkVvxe8NqLztpH-IAiIIU0xRCeG6MSYZpTMRol13a9nXctOZIV4WcVabYCLrjKRvfmD_df6C6D_hp4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Shu, Yunyi</creator><creator>Hirai, Yoshikazu</creator><creator>Tsuchiya, Toshiyuki</creator><creator>Tabata, Osamu</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><author>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compensation</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Finite element method</topic><topic>Matching</topic><topic>Modulus of elasticity</topic><topic>Resonators</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Stiffness</topic><topic>Tuning</topic><topic>Vibratory gyroscopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yunyi</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Yunyi</au><au>Hirai, Yoshikazu</au><au>Tsuchiya, Toshiyuki</au><au>Tabata, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>58</volume><issue>SD</issue><spage>SDDL06</spage><pages>SDDL06-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.7567/1347-4065/ab0dee</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2019-06, Vol.58 (SD), p.SDDL06
issn 0021-4922
1347-4065
language eng
recordid cdi_proquest_journals_2260069716
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Compensation
Elastic anisotropy
Elastic properties
Finite element method
Matching
Modulus of elasticity
Resonators
Silicon
Single crystals
Stiffness
Tuning
Vibratory gyroscopes
title Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20compensation%20for%20mode-matching%20of%20a%20(100)%20silicon%20ring%20resonator%20for%20a%20vibratory%20gyroscope&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Shu,%20Yunyi&rft.date=2019-06-01&rft.volume=58&rft.issue=SD&rft.spage=SDDL06&rft.pages=SDDL06-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/1347-4065/ab0dee&rft_dat=%3Cproquest_cross%3E2260069716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260069716&rft_id=info:pmid/&rfr_iscdi=true