Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope
A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a fu...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2019-06, Vol.58 (SD), p.SDDL06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | SD |
container_start_page | SDDL06 |
container_title | Japanese Journal of Applied Physics |
container_volume | 58 |
creator | Shu, Yunyi Hirai, Yoshikazu Tsuchiya, Toshiyuki Tabata, Osamu |
description | A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants. |
doi_str_mv | 10.7567/1347-4065/ab0dee |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2260069716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260069716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwEvDqx7SdO0O8qmUxh4UM8hTZOZsjY16YT996ZU9KLw4PHe-31fwofQJYHbPOP5nKQsTxjwbC5LqLQ-QpOf1TGaAFCSsAWlp-gshDqOPGNkgsxau0b33iq5w8o1nW6D7K1rsXEeN67SSSN79W7bLXYGS3xNAGY42J1VEfLD3uvgWtlHftBI_GlLP4wHvD14F5Tr9Dk6MXIX9MV3n6K3h_vX5WOyeV4_Le82iWJQ9IlZqIoYRQitUinLUqtFZUougVeG0jLeSpJn8cxZoVUm8xwKSDUzTLPMKJlO0dXo23n3sdehF7Xb-zY-KSjlAHyREx4pGCkVvxe8NqLztpH-IAiIIU0xRCeG6MSYZpTMRol13a9nXctOZIV4WcVabYCLrjKRvfmD_df6C6D_hp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260069716</pqid></control><display><type>article</type><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creator><creatorcontrib>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</creatorcontrib><description>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/1347-4065/ab0dee</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: IOP Publishing</publisher><subject>Compensation ; Elastic anisotropy ; Elastic properties ; Finite element method ; Matching ; Modulus of elasticity ; Resonators ; Silicon ; Single crystals ; Stiffness ; Tuning ; Vibratory gyroscopes</subject><ispartof>Japanese Journal of Applied Physics, 2019-06, Vol.58 (SD), p.SDDL06</ispartof><rights>2019 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</citedby><cites>FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/1347-4065/ab0dee/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,53850,53897</link.rule.ids></links><search><creatorcontrib>Shu, Yunyi</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</description><subject>Compensation</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Finite element method</subject><subject>Matching</subject><subject>Modulus of elasticity</subject><subject>Resonators</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Stiffness</subject><subject>Tuning</subject><subject>Vibratory gyroscopes</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwEvDqx7SdO0O8qmUxh4UM8hTZOZsjY16YT996ZU9KLw4PHe-31fwofQJYHbPOP5nKQsTxjwbC5LqLQ-QpOf1TGaAFCSsAWlp-gshDqOPGNkgsxau0b33iq5w8o1nW6D7K1rsXEeN67SSSN79W7bLXYGS3xNAGY42J1VEfLD3uvgWtlHftBI_GlLP4wHvD14F5Tr9Dk6MXIX9MV3n6K3h_vX5WOyeV4_Le82iWJQ9IlZqIoYRQitUinLUqtFZUougVeG0jLeSpJn8cxZoVUm8xwKSDUzTLPMKJlO0dXo23n3sdehF7Xb-zY-KSjlAHyREx4pGCkVvxe8NqLztpH-IAiIIU0xRCeG6MSYZpTMRol13a9nXctOZIV4WcVabYCLrjKRvfmD_df6C6D_hp4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Shu, Yunyi</creator><creator>Hirai, Yoshikazu</creator><creator>Tsuchiya, Toshiyuki</creator><creator>Tabata, Osamu</creator><general>IOP Publishing</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</title><author>Shu, Yunyi ; Hirai, Yoshikazu ; Tsuchiya, Toshiyuki ; Tabata, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f9cd1fc112d3aabbec9dfb6a06df22bd1fb175112648ec5a770803e4f4e45fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compensation</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Finite element method</topic><topic>Matching</topic><topic>Modulus of elasticity</topic><topic>Resonators</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Stiffness</topic><topic>Tuning</topic><topic>Vibratory gyroscopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yunyi</creatorcontrib><creatorcontrib>Hirai, Yoshikazu</creatorcontrib><creatorcontrib>Tsuchiya, Toshiyuki</creatorcontrib><creatorcontrib>Tabata, Osamu</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Yunyi</au><au>Hirai, Yoshikazu</au><au>Tsuchiya, Toshiyuki</au><au>Tabata, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>58</volume><issue>SD</issue><spage>SDDL06</spage><pages>SDDL06-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>A geometrical compensation design method in a (100) single crystal silicon (SCS) vibratory ring gyroscope (VRG) has been proposed in order to decrease frequency splits (∆f) caused by anisotropic in-plane Young's modulus (E) of (100) SCS and realize mode-matching in VRG. The radial width as a function of the E was varied to equalize the effective bending stiffness along the different crystal directions. The finite element analysis (FEA) simulation verified that the ∆f decreased from 260 Hz to 145 Hz after compensation. By optimizing suspending beam dimensions, the simulated ∆f further decreased to 9 Hz. Both uncompensated and compensated resonators of 1-mm diameter were fabricated using a silicon-on insulator (SOI) wafer of a 22- m-thick device layer. The fabricated devices showed large ∆f because of fabrication error, which is adjusted by electrostatic tuning. After the electrostatic tuning, the measured minimum frequency splits for the compensated and uncompensated VRGs were about 54 Hz and 166 Hz, respectively. The small measured ∆f after the electrostatic tuning indicates that the proposed geometrical compensation is effective in eliminating frequency split caused by anisotropy in elastic constants.</abstract><cop>Tokyo</cop><pub>IOP Publishing</pub><doi>10.7567/1347-4065/ab0dee</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4922 |
ispartof | Japanese Journal of Applied Physics, 2019-06, Vol.58 (SD), p.SDDL06 |
issn | 0021-4922 1347-4065 |
language | eng |
recordid | cdi_proquest_journals_2260069716 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Compensation Elastic anisotropy Elastic properties Finite element method Matching Modulus of elasticity Resonators Silicon Single crystals Stiffness Tuning Vibratory gyroscopes |
title | Geometrical compensation for mode-matching of a (100) silicon ring resonator for a vibratory gyroscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20compensation%20for%20mode-matching%20of%20a%20(100)%20silicon%20ring%20resonator%20for%20a%20vibratory%20gyroscope&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Shu,%20Yunyi&rft.date=2019-06-01&rft.volume=58&rft.issue=SD&rft.spage=SDDL06&rft.pages=SDDL06-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/1347-4065/ab0dee&rft_dat=%3Cproquest_cross%3E2260069716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260069716&rft_id=info:pmid/&rfr_iscdi=true |