A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics

A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2014-10, Vol.54 (4), p.999-1012
Hauptverfasser: Yao, Jianyao, Liu, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 4
container_start_page 999
container_title Computational mechanics
container_volume 54
creator Yao, Jianyao
Liu, G. R.
description A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.
doi_str_mv 10.1007/s00466-014-0990-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2260053368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385798029</galeid><sourcerecordid>A385798029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpodu0D9CboKcenM5ItiQfl22TBlIKTXIrCNmWtgq25UraktzyDn3DPkm1uFByCHMYZvj-mR9-Qt4inCKA_JAAaiEqwLqCtoVKPSMbrDkrE6ufkw2gVJUUsnlJXqV0C4CN4s2GfN_SyeTo7yoX4kTPr778efi9O_tIUxh_2UjLlvq5D9MSbUq-Gy1148EPiZp5oD6Xviyj7032YaY50B92CsP9bCbfp9fkhTNjsm_-9RNyc_bpeve5uvx6frHbXlZ9w5pcCSeg63pmlEMxMGUQHeedw9oiCGlMXWMnWccFyoZxq7jqmRpci9g6KTt-Qt6td5cYfh5syvo2HOJcXmrGBEDDuVCFOl2pvRmt9rMLOZq-1GCL2TBb58t-y1UjWwWsLYL3jwSFyfYu780hJX1x9e0xiyvbx5BStE4v0U8m3msEfUxIrwnpkpA-JqSPhtiqSYWd9zb-t_206C-ly5Km</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260053368</pqid></control><display><type>article</type><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yao, Jianyao ; Liu, G. R.</creator><creatorcontrib>Yao, Jianyao ; Liu, G. R.</creatorcontrib><description>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-014-0990-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bifurcations ; Blood vessels ; Classical and Continuum Physics ; Communications industry ; Compressibility ; Computational fluid dynamics ; Computational Science and Engineering ; Computer simulation ; Data structures ; Deformation ; Engineering ; Finite element method ; Flow simulation ; Fluid flow ; GSM (Global System for Mobile Communications) ; Hemodynamics ; Incompressible flow ; Incompressible fluids ; Mobile communication systems ; Newtonian fluids ; Original Paper ; Rigid walls ; Smoothing ; Telecommunications services industry ; Theoretical and Applied Mechanics ; Wireless communication systems</subject><ispartof>Computational mechanics, 2014-10, Vol.54 (4), p.999-1012</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</citedby><cites>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-014-0990-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-014-0990-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yao, Jianyao</creatorcontrib><creatorcontrib>Liu, G. R.</creatorcontrib><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Blood vessels</subject><subject>Classical and Continuum Physics</subject><subject>Communications industry</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Data structures</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>GSM (Global System for Mobile Communications)</subject><subject>Hemodynamics</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mobile communication systems</subject><subject>Newtonian fluids</subject><subject>Original Paper</subject><subject>Rigid walls</subject><subject>Smoothing</subject><subject>Telecommunications services industry</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wireless communication systems</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kcFq3DAQhkVpodu0D9CboKcenM5ItiQfl22TBlIKTXIrCNmWtgq25UraktzyDn3DPkm1uFByCHMYZvj-mR9-Qt4inCKA_JAAaiEqwLqCtoVKPSMbrDkrE6ufkw2gVJUUsnlJXqV0C4CN4s2GfN_SyeTo7yoX4kTPr778efi9O_tIUxh_2UjLlvq5D9MSbUq-Gy1148EPiZp5oD6Xviyj7032YaY50B92CsP9bCbfp9fkhTNjsm_-9RNyc_bpeve5uvx6frHbXlZ9w5pcCSeg63pmlEMxMGUQHeedw9oiCGlMXWMnWccFyoZxq7jqmRpci9g6KTt-Qt6td5cYfh5syvo2HOJcXmrGBEDDuVCFOl2pvRmt9rMLOZq-1GCL2TBb58t-y1UjWwWsLYL3jwSFyfYu780hJX1x9e0xiyvbx5BStE4v0U8m3msEfUxIrwnpkpA-JqSPhtiqSYWd9zb-t_206C-ly5Km</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yao, Jianyao</creator><creator>Liu, G. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141001</creationdate><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><author>Yao, Jianyao ; Liu, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Blood vessels</topic><topic>Classical and Continuum Physics</topic><topic>Communications industry</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Data structures</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>GSM (Global System for Mobile Communications)</topic><topic>Hemodynamics</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mobile communication systems</topic><topic>Newtonian fluids</topic><topic>Original Paper</topic><topic>Rigid walls</topic><topic>Smoothing</topic><topic>Telecommunications services industry</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jianyao</creatorcontrib><creatorcontrib>Liu, G. R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jianyao</au><au>Liu, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>54</volume><issue>4</issue><spage>999</spage><epage>1012</epage><pages>999-1012</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-014-0990-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2014-10, Vol.54 (4), p.999-1012
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2260053368
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Bifurcations
Blood vessels
Classical and Continuum Physics
Communications industry
Compressibility
Computational fluid dynamics
Computational Science and Engineering
Computer simulation
Data structures
Deformation
Engineering
Finite element method
Flow simulation
Fluid flow
GSM (Global System for Mobile Communications)
Hemodynamics
Incompressible flow
Incompressible fluids
Mobile communication systems
Newtonian fluids
Original Paper
Rigid walls
Smoothing
Telecommunications services industry
Theoretical and Applied Mechanics
Wireless communication systems
title A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-form%20GSM%E2%80%93CFD%20solver%20for%20incompressible%20fluids%20and%20its%20application%20to%20hemodynamics&rft.jtitle=Computational%20mechanics&rft.au=Yao,%20Jianyao&rft.date=2014-10-01&rft.volume=54&rft.issue=4&rft.spage=999&rft.epage=1012&rft.pages=999-1012&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-014-0990-8&rft_dat=%3Cgale_proqu%3EA385798029%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260053368&rft_id=info:pmid/&rft_galeid=A385798029&rfr_iscdi=true