A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics
A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2014-10, Vol.54 (4), p.999-1012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 4 |
container_start_page | 999 |
container_title | Computational mechanics |
container_volume | 54 |
creator | Yao, Jianyao Liu, G. R. |
description | A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper. |
doi_str_mv | 10.1007/s00466-014-0990-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2260053368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385798029</galeid><sourcerecordid>A385798029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhkVpodu0D9CboKcenM5ItiQfl22TBlIKTXIrCNmWtgq25UraktzyDn3DPkm1uFByCHMYZvj-mR9-Qt4inCKA_JAAaiEqwLqCtoVKPSMbrDkrE6ufkw2gVJUUsnlJXqV0C4CN4s2GfN_SyeTo7yoX4kTPr778efi9O_tIUxh_2UjLlvq5D9MSbUq-Gy1148EPiZp5oD6Xviyj7032YaY50B92CsP9bCbfp9fkhTNjsm_-9RNyc_bpeve5uvx6frHbXlZ9w5pcCSeg63pmlEMxMGUQHeedw9oiCGlMXWMnWccFyoZxq7jqmRpci9g6KTt-Qt6td5cYfh5syvo2HOJcXmrGBEDDuVCFOl2pvRmt9rMLOZq-1GCL2TBb58t-y1UjWwWsLYL3jwSFyfYu780hJX1x9e0xiyvbx5BStE4v0U8m3msEfUxIrwnpkpA-JqSPhtiqSYWd9zb-t_206C-ly5Km</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260053368</pqid></control><display><type>article</type><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yao, Jianyao ; Liu, G. R.</creator><creatorcontrib>Yao, Jianyao ; Liu, G. R.</creatorcontrib><description>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-014-0990-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bifurcations ; Blood vessels ; Classical and Continuum Physics ; Communications industry ; Compressibility ; Computational fluid dynamics ; Computational Science and Engineering ; Computer simulation ; Data structures ; Deformation ; Engineering ; Finite element method ; Flow simulation ; Fluid flow ; GSM (Global System for Mobile Communications) ; Hemodynamics ; Incompressible flow ; Incompressible fluids ; Mobile communication systems ; Newtonian fluids ; Original Paper ; Rigid walls ; Smoothing ; Telecommunications services industry ; Theoretical and Applied Mechanics ; Wireless communication systems</subject><ispartof>Computational mechanics, 2014-10, Vol.54 (4), p.999-1012</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Computational Mechanics is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</citedby><cites>FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-014-0990-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-014-0990-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yao, Jianyao</creatorcontrib><creatorcontrib>Liu, G. R.</creatorcontrib><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Blood vessels</subject><subject>Classical and Continuum Physics</subject><subject>Communications industry</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computational Science and Engineering</subject><subject>Computer simulation</subject><subject>Data structures</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>GSM (Global System for Mobile Communications)</subject><subject>Hemodynamics</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Mobile communication systems</subject><subject>Newtonian fluids</subject><subject>Original Paper</subject><subject>Rigid walls</subject><subject>Smoothing</subject><subject>Telecommunications services industry</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wireless communication systems</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kcFq3DAQhkVpodu0D9CboKcenM5ItiQfl22TBlIKTXIrCNmWtgq25UraktzyDn3DPkm1uFByCHMYZvj-mR9-Qt4inCKA_JAAaiEqwLqCtoVKPSMbrDkrE6ufkw2gVJUUsnlJXqV0C4CN4s2GfN_SyeTo7yoX4kTPr778efi9O_tIUxh_2UjLlvq5D9MSbUq-Gy1148EPiZp5oD6Xviyj7032YaY50B92CsP9bCbfp9fkhTNjsm_-9RNyc_bpeve5uvx6frHbXlZ9w5pcCSeg63pmlEMxMGUQHeedw9oiCGlMXWMnWccFyoZxq7jqmRpci9g6KTt-Qt6td5cYfh5syvo2HOJcXmrGBEDDuVCFOl2pvRmt9rMLOZq-1GCL2TBb58t-y1UjWwWsLYL3jwSFyfYu780hJX1x9e0xiyvbx5BStE4v0U8m3msEfUxIrwnpkpA-JqSPhtiqSYWd9zb-t_206C-ly5Km</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yao, Jianyao</creator><creator>Liu, G. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141001</creationdate><title>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</title><author>Yao, Jianyao ; Liu, G. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-6f60bbc2a8f16d28a11f33bf14e1067aa441b72b3617523e838c28df9119f77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Blood vessels</topic><topic>Classical and Continuum Physics</topic><topic>Communications industry</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computational Science and Engineering</topic><topic>Computer simulation</topic><topic>Data structures</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>GSM (Global System for Mobile Communications)</topic><topic>Hemodynamics</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Mobile communication systems</topic><topic>Newtonian fluids</topic><topic>Original Paper</topic><topic>Rigid walls</topic><topic>Smoothing</topic><topic>Telecommunications services industry</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jianyao</creatorcontrib><creatorcontrib>Liu, G. R.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jianyao</au><au>Liu, G. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>54</volume><issue>4</issue><spage>999</spage><epage>1012</epage><pages>999-1012</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A GSM–CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM–CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-014-0990-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2014-10, Vol.54 (4), p.999-1012 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2260053368 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bifurcations Blood vessels Classical and Continuum Physics Communications industry Compressibility Computational fluid dynamics Computational Science and Engineering Computer simulation Data structures Deformation Engineering Finite element method Flow simulation Fluid flow GSM (Global System for Mobile Communications) Hemodynamics Incompressible flow Incompressible fluids Mobile communication systems Newtonian fluids Original Paper Rigid walls Smoothing Telecommunications services industry Theoretical and Applied Mechanics Wireless communication systems |
title | A matrix-form GSM–CFD solver for incompressible fluids and its application to hemodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-form%20GSM%E2%80%93CFD%20solver%20for%20incompressible%20fluids%20and%20its%20application%20to%20hemodynamics&rft.jtitle=Computational%20mechanics&rft.au=Yao,%20Jianyao&rft.date=2014-10-01&rft.volume=54&rft.issue=4&rft.spage=999&rft.epage=1012&rft.pages=999-1012&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-014-0990-8&rft_dat=%3Cgale_proqu%3EA385798029%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260053368&rft_id=info:pmid/&rft_galeid=A385798029&rfr_iscdi=true |