Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials
The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and tr...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2016-12, Vol.23 (6), p.3677-3689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3689 |
---|---|
container_issue | 6 |
container_start_page | 3677 |
container_title | Cellulose (London) |
container_volume | 23 |
creator | Vilela, Carla Gadim, Tiago D. O. Silvestre, Armando J. D. Freire, Carmen S. R. Figueiredo, Filipe M. L. |
description | The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H
+
] g
−1
). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm
−1
at 98 % RH, with activation energy close to 15 kJ mol
−1
, from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion
®
membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells. |
doi_str_mv | 10.1007/s10570-016-1050-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259937956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259937956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8FL3qIO5O0SXOUxX-w6EVB8BCSburu0m5q0gX77c1SD14UBt4M_N7M8Ag5R7hGADmLCIUECiho6oDKAzLBQjJaluztkExACUWBcXVMTmLcAICSDCfk_clsfeWaZtf46Gadb4bL1vUrU4Wh8am-hjQNTdatfOxWpndXWeXbzsd172JmYtYF3_ttFl1ngul9yNoEhbVp4ik5qpO4sx-dkte725f5A1083z_Obxa0yqXs6VLW0vKCL4VyFtFW3CKvVF4IzNHmrLaiqp1BZxVnKIS0DG0pcisYuNoYPiUX4970yufOxV5v_C5s00nNWKEUl6oQ_1FYllByDmxP4UhVwccYXK27sG5NGDSC3ietx6R1Slrvk9YyedjoiYndfrjwa_Ofpm9W0IKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259937956</pqid></control><display><type>article</type><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</creator><creatorcontrib>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</creatorcontrib><description>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H
+
] g
−1
). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm
−1
at 98 % RH, with activation energy close to 15 kJ mol
−1
, from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion
®
membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-016-1050-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Crosslinking ; Free radical polymerization ; Free radicals ; Fuel cells ; Glass ; Ion exchange ; Mechanical properties ; Membranes ; Modulus of elasticity ; Nanocomposites ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Protons ; Relative humidity ; Room temperature ; Separators ; Storage modulus ; Sustainable Development ; Viscoelasticity</subject><ispartof>Cellulose (London), 2016-12, Vol.23 (6), p.3677-3689</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>Cellulose is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</citedby><cites>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</cites><orcidid>0000-0002-9212-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-016-1050-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-016-1050-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vilela, Carla</creatorcontrib><creatorcontrib>Gadim, Tiago D. O.</creatorcontrib><creatorcontrib>Silvestre, Armando J. D.</creatorcontrib><creatorcontrib>Freire, Carmen S. R.</creatorcontrib><creatorcontrib>Figueiredo, Filipe M. L.</creatorcontrib><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H
+
] g
−1
). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm
−1
at 98 % RH, with activation energy close to 15 kJ mol
−1
, from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion
®
membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</description><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crosslinking</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>Fuel cells</subject><subject>Glass</subject><subject>Ion exchange</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Protons</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Separators</subject><subject>Storage modulus</subject><subject>Sustainable Development</subject><subject>Viscoelasticity</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AG8FL3qIO5O0SXOUxX-w6EVB8BCSburu0m5q0gX77c1SD14UBt4M_N7M8Ag5R7hGADmLCIUECiho6oDKAzLBQjJaluztkExACUWBcXVMTmLcAICSDCfk_clsfeWaZtf46Gadb4bL1vUrU4Wh8am-hjQNTdatfOxWpndXWeXbzsd172JmYtYF3_ttFl1ngul9yNoEhbVp4ik5qpO4sx-dkte725f5A1083z_Obxa0yqXs6VLW0vKCL4VyFtFW3CKvVF4IzNHmrLaiqp1BZxVnKIS0DG0pcisYuNoYPiUX4970yufOxV5v_C5s00nNWKEUl6oQ_1FYllByDmxP4UhVwccYXK27sG5NGDSC3ietx6R1Slrvk9YyedjoiYndfrjwa_Ofpm9W0IKV</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Vilela, Carla</creator><creator>Gadim, Tiago D. O.</creator><creator>Silvestre, Armando J. D.</creator><creator>Freire, Carmen S. R.</creator><creator>Figueiredo, Filipe M. L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9212-2704</orcidid></search><sort><creationdate>20161201</creationdate><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><author>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crosslinking</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>Fuel cells</topic><topic>Glass</topic><topic>Ion exchange</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Protons</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Separators</topic><topic>Storage modulus</topic><topic>Sustainable Development</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilela, Carla</creatorcontrib><creatorcontrib>Gadim, Tiago D. O.</creatorcontrib><creatorcontrib>Silvestre, Armando J. D.</creatorcontrib><creatorcontrib>Freire, Carmen S. R.</creatorcontrib><creatorcontrib>Figueiredo, Filipe M. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilela, Carla</au><au>Gadim, Tiago D. O.</au><au>Silvestre, Armando J. D.</au><au>Freire, Carmen S. R.</au><au>Figueiredo, Filipe M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>23</volume><issue>6</issue><spage>3677</spage><epage>3689</epage><pages>3677-3689</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H
+
] g
−1
). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm
−1
at 98 % RH, with activation energy close to 15 kJ mol
−1
, from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion
®
membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-016-1050-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9212-2704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2016-12, Vol.23 (6), p.3677-3689 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2259937956 |
source | Springer Nature - Complete Springer Journals |
subjects | Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Composites Crosslinking Free radical polymerization Free radicals Fuel cells Glass Ion exchange Mechanical properties Membranes Modulus of elasticity Nanocomposites Natural Materials Organic Chemistry Original Paper Physical Chemistry Polymer Sciences Protons Relative humidity Room temperature Separators Storage modulus Sustainable Development Viscoelasticity |
title | Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocellulose/poly(methacryloyloxyethyl%20phosphate)%20composites%20as%20proton%20separator%20materials&rft.jtitle=Cellulose%20(London)&rft.au=Vilela,%20Carla&rft.date=2016-12-01&rft.volume=23&rft.issue=6&rft.spage=3677&rft.epage=3689&rft.pages=3677-3689&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-016-1050-7&rft_dat=%3Cproquest_cross%3E2259937956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259937956&rft_id=info:pmid/&rfr_iscdi=true |