Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials

The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2016-12, Vol.23 (6), p.3677-3689
Hauptverfasser: Vilela, Carla, Gadim, Tiago D. O., Silvestre, Armando J. D., Freire, Carmen S. R., Figueiredo, Filipe M. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3689
container_issue 6
container_start_page 3677
container_title Cellulose (London)
container_volume 23
creator Vilela, Carla
Gadim, Tiago D. O.
Silvestre, Armando J. D.
Freire, Carmen S. R.
Figueiredo, Filipe M. L.
description The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H + ] g −1 ). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm −1 at 98 % RH, with activation energy close to 15 kJ mol −1 , from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion ® membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.
doi_str_mv 10.1007/s10570-016-1050-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259937956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259937956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8FL3qIO5O0SXOUxX-w6EVB8BCSburu0m5q0gX77c1SD14UBt4M_N7M8Ag5R7hGADmLCIUECiho6oDKAzLBQjJaluztkExACUWBcXVMTmLcAICSDCfk_clsfeWaZtf46Gadb4bL1vUrU4Wh8am-hjQNTdatfOxWpndXWeXbzsd172JmYtYF3_ttFl1ngul9yNoEhbVp4ik5qpO4sx-dkte725f5A1083z_Obxa0yqXs6VLW0vKCL4VyFtFW3CKvVF4IzNHmrLaiqp1BZxVnKIS0DG0pcisYuNoYPiUX4970yufOxV5v_C5s00nNWKEUl6oQ_1FYllByDmxP4UhVwccYXK27sG5NGDSC3ietx6R1Slrvk9YyedjoiYndfrjwa_Ofpm9W0IKV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259937956</pqid></control><display><type>article</type><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</creator><creatorcontrib>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</creatorcontrib><description>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H + ] g −1 ). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm −1 at 98 % RH, with activation energy close to 15 kJ mol −1 , from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion ® membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-016-1050-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Crosslinking ; Free radical polymerization ; Free radicals ; Fuel cells ; Glass ; Ion exchange ; Mechanical properties ; Membranes ; Modulus of elasticity ; Nanocomposites ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Protons ; Relative humidity ; Room temperature ; Separators ; Storage modulus ; Sustainable Development ; Viscoelasticity</subject><ispartof>Cellulose (London), 2016-12, Vol.23 (6), p.3677-3689</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Cellulose is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</citedby><cites>FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</cites><orcidid>0000-0002-9212-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-016-1050-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-016-1050-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vilela, Carla</creatorcontrib><creatorcontrib>Gadim, Tiago D. O.</creatorcontrib><creatorcontrib>Silvestre, Armando J. D.</creatorcontrib><creatorcontrib>Freire, Carmen S. R.</creatorcontrib><creatorcontrib>Figueiredo, Filipe M. L.</creatorcontrib><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H + ] g −1 ). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm −1 at 98 % RH, with activation energy close to 15 kJ mol −1 , from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion ® membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</description><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crosslinking</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>Fuel cells</subject><subject>Glass</subject><subject>Ion exchange</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Protons</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Separators</subject><subject>Storage modulus</subject><subject>Sustainable Development</subject><subject>Viscoelasticity</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AG8FL3qIO5O0SXOUxX-w6EVB8BCSburu0m5q0gX77c1SD14UBt4M_N7M8Ag5R7hGADmLCIUECiho6oDKAzLBQjJaluztkExACUWBcXVMTmLcAICSDCfk_clsfeWaZtf46Gadb4bL1vUrU4Wh8am-hjQNTdatfOxWpndXWeXbzsd172JmYtYF3_ttFl1ngul9yNoEhbVp4ik5qpO4sx-dkte725f5A1083z_Obxa0yqXs6VLW0vKCL4VyFtFW3CKvVF4IzNHmrLaiqp1BZxVnKIS0DG0pcisYuNoYPiUX4970yufOxV5v_C5s00nNWKEUl6oQ_1FYllByDmxP4UhVwccYXK27sG5NGDSC3ietx6R1Slrvk9YyedjoiYndfrjwa_Ofpm9W0IKV</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Vilela, Carla</creator><creator>Gadim, Tiago D. O.</creator><creator>Silvestre, Armando J. D.</creator><creator>Freire, Carmen S. R.</creator><creator>Figueiredo, Filipe M. L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9212-2704</orcidid></search><sort><creationdate>20161201</creationdate><title>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</title><author>Vilela, Carla ; Gadim, Tiago D. O. ; Silvestre, Armando J. D. ; Freire, Carmen S. R. ; Figueiredo, Filipe M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-d7f7b353d69eb11bc3b13c9456141b42fb6cfea1eb9321667b21b864b620efaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crosslinking</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>Fuel cells</topic><topic>Glass</topic><topic>Ion exchange</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Protons</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Separators</topic><topic>Storage modulus</topic><topic>Sustainable Development</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilela, Carla</creatorcontrib><creatorcontrib>Gadim, Tiago D. O.</creatorcontrib><creatorcontrib>Silvestre, Armando J. D.</creatorcontrib><creatorcontrib>Freire, Carmen S. R.</creatorcontrib><creatorcontrib>Figueiredo, Filipe M. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilela, Carla</au><au>Gadim, Tiago D. O.</au><au>Silvestre, Armando J. D.</au><au>Freire, Carmen S. R.</au><au>Figueiredo, Filipe M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>23</volume><issue>6</issue><spage>3677</spage><epage>3689</epage><pages>3677-3689</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>The present study discloses a new type of nanocomposite membranes consisting of cross-linked poly(methacryloyloxyethyl phosphate) (PMOEP) and bacterial cellulose (BC) prepared by the in situ free radical polymerization of MOEP within the BC network under green reaction conditions. Homogeneous and translucent PMOEP/BC nanocomposite membranes with 52, 61 and 78 wt% of BC have good thermal and viscoelastic stability up to 180 °C with storage modulus higher than 200 MPa, good mechanical properties (Young’s modulus = 7.8–13.5 GPa), and high ion exchange capacity (1.95–3.38 mmol [H + ] g −1 ). The protonic conductivity of these nanocomposite membranes increases with increasing PMOEP content and relative humidity (RH), reaching values higher than 0.1 S cm −1 at 98 % RH, with activation energy close to 15 kJ mol −1 , from room temperature up to 94 °C. These values are comparable to, or higher than, data typically found for a commercial Nafion ® membrane, further confirming the potential of these proton separator materials as a green alternative for application in fuel cells.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-016-1050-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9212-2704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2016-12, Vol.23 (6), p.3677-3689
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2259937956
source Springer Nature - Complete Springer Journals
subjects Bioorganic Chemistry
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Crosslinking
Free radical polymerization
Free radicals
Fuel cells
Glass
Ion exchange
Mechanical properties
Membranes
Modulus of elasticity
Nanocomposites
Natural Materials
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
Protons
Relative humidity
Room temperature
Separators
Storage modulus
Sustainable Development
Viscoelasticity
title Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocellulose/poly(methacryloyloxyethyl%20phosphate)%20composites%20as%20proton%20separator%20materials&rft.jtitle=Cellulose%20(London)&rft.au=Vilela,%20Carla&rft.date=2016-12-01&rft.volume=23&rft.issue=6&rft.spage=3677&rft.epage=3689&rft.pages=3677-3689&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-016-1050-7&rft_dat=%3Cproquest_cross%3E2259937956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259937956&rft_id=info:pmid/&rfr_iscdi=true