Novel aspects of nanocellulose
Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nan...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2014, Vol.21 (4), p.2479-2488 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2488 |
---|---|
container_issue | 4 |
container_start_page | 2479 |
container_title | Cellulose (London) |
container_volume | 21 |
creator | Hettrich, Kay Pinnow, Manfred Volkert, Bert Passauer, Lars Fischer, Steffen |
description | Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis. |
doi_str_mv | 10.1007/s10570-014-0265-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259932889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259932889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wIsueI7OTHbzcZRiVSh60IK3kMZsaVk3NWkF_70pK3jzNId5nneGl7FzhGsEUDcZoVHAAWsOJBuuD9gIG0Vca3o7ZCMw0pSNMMfsJOc1ABhFOGIXT_ErdJXLm-C3uYpt1bs--tB1uy7mcMqOWtflcPY7x2w-vXudPPDZ8_3j5HbGfY2w5aF2ZMofHpTwWmvjgvJGQ_mgFo1pgtRGKOcXaiG0oYWU6AORlu-opBRejNnVkLtJ8XMX8tau4y715aQlaowRVEILhQPlU8w5hdZu0urDpW-LYPc12KEGW2qw-xqsLg4NTi5svwzpL_k_6XKQWhetW6ZVtvMXKgAAaoFCiB_fEmW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259932889</pqid></control><display><type>article</type><title>Novel aspects of nanocellulose</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</creator><creatorcontrib>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</creatorcontrib><description>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-014-0265-8</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Aqueous solutions ; Ball milling ; Bioorganic Chemistry ; Carboxymethyl cellulose ; carboxymethylcellulose ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; dispersions ; Glass ; grinding ; Grinding mills ; homogenization ; Hydrolysis ; Microprocessors ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Raman spectroscopy ; Sustainable Development</subject><ispartof>Cellulose (London), 2014, Vol.21 (4), p.2479-2488</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Cellulose is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</citedby><cites>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-014-0265-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-014-0265-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hettrich, Kay</creatorcontrib><creatorcontrib>Pinnow, Manfred</creatorcontrib><creatorcontrib>Volkert, Bert</creatorcontrib><creatorcontrib>Passauer, Lars</creatorcontrib><creatorcontrib>Fischer, Steffen</creatorcontrib><title>Novel aspects of nanocellulose</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</description><subject>Aqueous solutions</subject><subject>Ball milling</subject><subject>Bioorganic Chemistry</subject><subject>Carboxymethyl cellulose</subject><subject>carboxymethylcellulose</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>dispersions</subject><subject>Glass</subject><subject>grinding</subject><subject>Grinding mills</subject><subject>homogenization</subject><subject>Hydrolysis</subject><subject>Microprocessors</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wIsueI7OTHbzcZRiVSh60IK3kMZsaVk3NWkF_70pK3jzNId5nneGl7FzhGsEUDcZoVHAAWsOJBuuD9gIG0Vca3o7ZCMw0pSNMMfsJOc1ABhFOGIXT_ErdJXLm-C3uYpt1bs--tB1uy7mcMqOWtflcPY7x2w-vXudPPDZ8_3j5HbGfY2w5aF2ZMofHpTwWmvjgvJGQ_mgFo1pgtRGKOcXaiG0oYWU6AORlu-opBRejNnVkLtJ8XMX8tau4y715aQlaowRVEILhQPlU8w5hdZu0urDpW-LYPc12KEGW2qw-xqsLg4NTi5svwzpL_k_6XKQWhetW6ZVtvMXKgAAaoFCiB_fEmW7</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Hettrich, Kay</creator><creator>Pinnow, Manfred</creator><creator>Volkert, Bert</creator><creator>Passauer, Lars</creator><creator>Fischer, Steffen</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2014</creationdate><title>Novel aspects of nanocellulose</title><author>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous solutions</topic><topic>Ball milling</topic><topic>Bioorganic Chemistry</topic><topic>Carboxymethyl cellulose</topic><topic>carboxymethylcellulose</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>dispersions</topic><topic>Glass</topic><topic>grinding</topic><topic>Grinding mills</topic><topic>homogenization</topic><topic>Hydrolysis</topic><topic>Microprocessors</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettrich, Kay</creatorcontrib><creatorcontrib>Pinnow, Manfred</creatorcontrib><creatorcontrib>Volkert, Bert</creatorcontrib><creatorcontrib>Passauer, Lars</creatorcontrib><creatorcontrib>Fischer, Steffen</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettrich, Kay</au><au>Pinnow, Manfred</au><au>Volkert, Bert</au><au>Passauer, Lars</au><au>Fischer, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel aspects of nanocellulose</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>4</issue><spage>2479</spage><epage>2488</epage><pages>2479-2488</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10570-014-0265-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2014, Vol.21 (4), p.2479-2488 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2259932889 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aqueous solutions Ball milling Bioorganic Chemistry Carboxymethyl cellulose carboxymethylcellulose Cellulose Cellulose fibers Ceramics Chemistry Chemistry and Materials Science Composites dispersions Glass grinding Grinding mills homogenization Hydrolysis Microprocessors Nanoparticles Natural Materials Organic Chemistry Original Paper Physical Chemistry Polymer Sciences Raman spectroscopy Sustainable Development |
title | Novel aspects of nanocellulose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20aspects%20of%20nanocellulose&rft.jtitle=Cellulose%20(London)&rft.au=Hettrich,%20Kay&rft.date=2014&rft.volume=21&rft.issue=4&rft.spage=2479&rft.epage=2488&rft.pages=2479-2488&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-014-0265-8&rft_dat=%3Cproquest_cross%3E2259932889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259932889&rft_id=info:pmid/&rfr_iscdi=true |