Novel aspects of nanocellulose

Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2014, Vol.21 (4), p.2479-2488
Hauptverfasser: Hettrich, Kay, Pinnow, Manfred, Volkert, Bert, Passauer, Lars, Fischer, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2488
container_issue 4
container_start_page 2479
container_title Cellulose (London)
container_volume 21
creator Hettrich, Kay
Pinnow, Manfred
Volkert, Bert
Passauer, Lars
Fischer, Steffen
description Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.
doi_str_mv 10.1007/s10570-014-0265-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259932889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259932889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wIsueI7OTHbzcZRiVSh60IK3kMZsaVk3NWkF_70pK3jzNId5nneGl7FzhGsEUDcZoVHAAWsOJBuuD9gIG0Vca3o7ZCMw0pSNMMfsJOc1ABhFOGIXT_ErdJXLm-C3uYpt1bs--tB1uy7mcMqOWtflcPY7x2w-vXudPPDZ8_3j5HbGfY2w5aF2ZMofHpTwWmvjgvJGQ_mgFo1pgtRGKOcXaiG0oYWU6AORlu-opBRejNnVkLtJ8XMX8tau4y715aQlaowRVEILhQPlU8w5hdZu0urDpW-LYPc12KEGW2qw-xqsLg4NTi5svwzpL_k_6XKQWhetW6ZVtvMXKgAAaoFCiB_fEmW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259932889</pqid></control><display><type>article</type><title>Novel aspects of nanocellulose</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</creator><creatorcontrib>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</creatorcontrib><description>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-014-0265-8</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Aqueous solutions ; Ball milling ; Bioorganic Chemistry ; Carboxymethyl cellulose ; carboxymethylcellulose ; Cellulose ; Cellulose fibers ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; dispersions ; Glass ; grinding ; Grinding mills ; homogenization ; Hydrolysis ; Microprocessors ; Nanoparticles ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Raman spectroscopy ; Sustainable Development</subject><ispartof>Cellulose (London), 2014, Vol.21 (4), p.2479-2488</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Cellulose is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</citedby><cites>FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-014-0265-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-014-0265-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hettrich, Kay</creatorcontrib><creatorcontrib>Pinnow, Manfred</creatorcontrib><creatorcontrib>Volkert, Bert</creatorcontrib><creatorcontrib>Passauer, Lars</creatorcontrib><creatorcontrib>Fischer, Steffen</creatorcontrib><title>Novel aspects of nanocellulose</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</description><subject>Aqueous solutions</subject><subject>Ball milling</subject><subject>Bioorganic Chemistry</subject><subject>Carboxymethyl cellulose</subject><subject>carboxymethylcellulose</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>dispersions</subject><subject>Glass</subject><subject>grinding</subject><subject>Grinding mills</subject><subject>homogenization</subject><subject>Hydrolysis</subject><subject>Microprocessors</subject><subject>Nanoparticles</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_wIsueI7OTHbzcZRiVSh60IK3kMZsaVk3NWkF_70pK3jzNId5nneGl7FzhGsEUDcZoVHAAWsOJBuuD9gIG0Vca3o7ZCMw0pSNMMfsJOc1ABhFOGIXT_ErdJXLm-C3uYpt1bs--tB1uy7mcMqOWtflcPY7x2w-vXudPPDZ8_3j5HbGfY2w5aF2ZMofHpTwWmvjgvJGQ_mgFo1pgtRGKOcXaiG0oYWU6AORlu-opBRejNnVkLtJ8XMX8tau4y715aQlaowRVEILhQPlU8w5hdZu0urDpW-LYPc12KEGW2qw-xqsLg4NTi5svwzpL_k_6XKQWhetW6ZVtvMXKgAAaoFCiB_fEmW7</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Hettrich, Kay</creator><creator>Pinnow, Manfred</creator><creator>Volkert, Bert</creator><creator>Passauer, Lars</creator><creator>Fischer, Steffen</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2014</creationdate><title>Novel aspects of nanocellulose</title><author>Hettrich, Kay ; Pinnow, Manfred ; Volkert, Bert ; Passauer, Lars ; Fischer, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-e4a29100c073c8889ae7c98015743595e68937acb7b3892b661ce2286d17663c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aqueous solutions</topic><topic>Ball milling</topic><topic>Bioorganic Chemistry</topic><topic>Carboxymethyl cellulose</topic><topic>carboxymethylcellulose</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>dispersions</topic><topic>Glass</topic><topic>grinding</topic><topic>Grinding mills</topic><topic>homogenization</topic><topic>Hydrolysis</topic><topic>Microprocessors</topic><topic>Nanoparticles</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hettrich, Kay</creatorcontrib><creatorcontrib>Pinnow, Manfred</creatorcontrib><creatorcontrib>Volkert, Bert</creatorcontrib><creatorcontrib>Passauer, Lars</creatorcontrib><creatorcontrib>Fischer, Steffen</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hettrich, Kay</au><au>Pinnow, Manfred</au><au>Volkert, Bert</au><au>Passauer, Lars</au><au>Fischer, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel aspects of nanocellulose</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>4</issue><spage>2479</spage><epage>2488</epage><pages>2479-2488</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Novel nanoscaled cellulose particles were prepared using high-pressure homogenization of aqueous media contenting treated cellulose samples in a Microfluidizer® processor (MF). Here, we present the generation of spherical cellulose nanoparticles as an extension of previously published reports of nano fibrillated cellulose. Although MF treatment of unmodified cellulose yields nanofibrils which are reported in several publications, in the current work different kinds of pretreatments were proven to be necessary to obtain spherical structured cellulose nanoparticles. One such treatment may be the decrystallization of cellulose regenerating it from N-methylmorpholine-N-oxid-monohydrate (NMMNO*H₂O). Nanocellulose was then obtained by a subsequent high-pressure mechanical treatment of the precipitate in aqueous dispersion. Decrystallization was also realized by grinding cellulose in a planetary ball mill. The resulting amorphous intermediates were characterized by Raman spectroscopy. Another approach tested was hydrolysis and subsequent mechanical treatment using an Ultra-Turrax® and MF. Another alternative was given by the mechanical treatment of aqueous dispersions of low substituted cellulose derivatives such as carboxymethyl cellulose and oxidized cellulose without any further hydrolysis.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10570-014-0265-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2014, Vol.21 (4), p.2479-2488
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2259932889
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Ball milling
Bioorganic Chemistry
Carboxymethyl cellulose
carboxymethylcellulose
Cellulose
Cellulose fibers
Ceramics
Chemistry
Chemistry and Materials Science
Composites
dispersions
Glass
grinding
Grinding mills
homogenization
Hydrolysis
Microprocessors
Nanoparticles
Natural Materials
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
Raman spectroscopy
Sustainable Development
title Novel aspects of nanocellulose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20aspects%20of%20nanocellulose&rft.jtitle=Cellulose%20(London)&rft.au=Hettrich,%20Kay&rft.date=2014&rft.volume=21&rft.issue=4&rft.spage=2479&rft.epage=2488&rft.pages=2479-2488&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-014-0265-8&rft_dat=%3Cproquest_cross%3E2259932889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259932889&rft_id=info:pmid/&rfr_iscdi=true