Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations
AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining emp...
Gespeichert in:
Veröffentlicht in: | Journal of computing in civil engineering 2019-11, Vol.33 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of computing in civil engineering |
container_volume | 33 |
creator | Karaguzel, Omer T Elshambakey, Mohammed Zhu, Yimin Hong, Tianzhen Tolone, William J Das Bhattacharjee, Sreyasee Cho, Isaac Dou, Wenwen Wang, Haopeng Lu, Siliang Khalefa, Mohamed Tao, Yong |
description | AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI. |
doi_str_mv | 10.1061/(ASCE)CP.1943-5487.0000857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259930844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259930844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKffIehFD51Jk6aJt1mnDgYbVM8ha9JZ2ZqaP4d9e1s29eR7Cbx5fj9eHgCuMZpgxPD97bQsZnfFaoIFJUlGeT5B_fAsPwGj390pGCHO84RwhM_BhfefPZOynI6AXHamhYXddTE07QbO29opH1ysQnQG1tbB8kO54etJBQWnrdruQ1N5GCwsY9dZF-BjbLZ6QGatcZs9LJtd3KrQ2NZfgrNabb25Or5j8P48eytek8XyZV5MF4kinIdEKFRzpnOGOUeZzpVYM8EzIRjRRGWUkEwJjNaKcaGZVjVla2qo1pRnNaMpGYObQ2_n7Fc0PshPG11_rJdp2vcQxCntqYcDVTnrvTO17FyzU24vMZKDUCkHobJYyUGeHOTJo9A-zA5h5SvzV_-T_D_4DT-5enI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259930844</pqid></control><display><type>article</type><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</creator><creatorcontrib>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</creatorcontrib><description>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</description><identifier>ISSN: 0887-3801</identifier><identifier>EISSN: 1943-5487</identifier><identifier>DOI: 10.1061/(ASCE)CP.1943-5487.0000857</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Analytics ; Building design ; Computation ; Computer simulation ; Data analysis ; Diagnostic systems ; Empirical analysis ; Energy policy ; Federal agencies ; Information sharing ; Infrastructure ; Mathematical analysis ; Office buildings ; Performance measurement ; Schedules ; Technical Papers</subject><ispartof>Journal of computing in civil engineering, 2019-11, Vol.33 (6)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</citedby><cites>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</cites><orcidid>0000-0001-6059-5032 ; 0000-0002-4550-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)CP.1943-5487.0000857$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000857$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76163,76171</link.rule.ids></links><search><creatorcontrib>Karaguzel, Omer T</creatorcontrib><creatorcontrib>Elshambakey, Mohammed</creatorcontrib><creatorcontrib>Zhu, Yimin</creatorcontrib><creatorcontrib>Hong, Tianzhen</creatorcontrib><creatorcontrib>Tolone, William J</creatorcontrib><creatorcontrib>Das Bhattacharjee, Sreyasee</creatorcontrib><creatorcontrib>Cho, Isaac</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><creatorcontrib>Wang, Haopeng</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><creatorcontrib>Khalefa, Mohamed</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><title>Journal of computing in civil engineering</title><description>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</description><subject>Analytics</subject><subject>Building design</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Diagnostic systems</subject><subject>Empirical analysis</subject><subject>Energy policy</subject><subject>Federal agencies</subject><subject>Information sharing</subject><subject>Infrastructure</subject><subject>Mathematical analysis</subject><subject>Office buildings</subject><subject>Performance measurement</subject><subject>Schedules</subject><subject>Technical Papers</subject><issn>0887-3801</issn><issn>1943-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoOKffIehFD51Jk6aJt1mnDgYbVM8ha9JZ2ZqaP4d9e1s29eR7Cbx5fj9eHgCuMZpgxPD97bQsZnfFaoIFJUlGeT5B_fAsPwGj390pGCHO84RwhM_BhfefPZOynI6AXHamhYXddTE07QbO29opH1ysQnQG1tbB8kO54etJBQWnrdruQ1N5GCwsY9dZF-BjbLZ6QGatcZs9LJtd3KrQ2NZfgrNabb25Or5j8P48eytek8XyZV5MF4kinIdEKFRzpnOGOUeZzpVYM8EzIRjRRGWUkEwJjNaKcaGZVjVla2qo1pRnNaMpGYObQ2_n7Fc0PshPG11_rJdp2vcQxCntqYcDVTnrvTO17FyzU24vMZKDUCkHobJYyUGeHOTJo9A-zA5h5SvzV_-T_D_4DT-5enI</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Karaguzel, Omer T</creator><creator>Elshambakey, Mohammed</creator><creator>Zhu, Yimin</creator><creator>Hong, Tianzhen</creator><creator>Tolone, William J</creator><creator>Das Bhattacharjee, Sreyasee</creator><creator>Cho, Isaac</creator><creator>Dou, Wenwen</creator><creator>Wang, Haopeng</creator><creator>Lu, Siliang</creator><creator>Khalefa, Mohamed</creator><creator>Tao, Yong</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6059-5032</orcidid><orcidid>https://orcid.org/0000-0002-4550-4152</orcidid></search><sort><creationdate>20191101</creationdate><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><author>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytics</topic><topic>Building design</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Diagnostic systems</topic><topic>Empirical analysis</topic><topic>Energy policy</topic><topic>Federal agencies</topic><topic>Information sharing</topic><topic>Infrastructure</topic><topic>Mathematical analysis</topic><topic>Office buildings</topic><topic>Performance measurement</topic><topic>Schedules</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaguzel, Omer T</creatorcontrib><creatorcontrib>Elshambakey, Mohammed</creatorcontrib><creatorcontrib>Zhu, Yimin</creatorcontrib><creatorcontrib>Hong, Tianzhen</creatorcontrib><creatorcontrib>Tolone, William J</creatorcontrib><creatorcontrib>Das Bhattacharjee, Sreyasee</creatorcontrib><creatorcontrib>Cho, Isaac</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><creatorcontrib>Wang, Haopeng</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><creatorcontrib>Khalefa, Mohamed</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computing in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaguzel, Omer T</au><au>Elshambakey, Mohammed</au><au>Zhu, Yimin</au><au>Hong, Tianzhen</au><au>Tolone, William J</au><au>Das Bhattacharjee, Sreyasee</au><au>Cho, Isaac</au><au>Dou, Wenwen</au><au>Wang, Haopeng</au><au>Lu, Siliang</au><au>Khalefa, Mohamed</au><au>Tao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</atitle><jtitle>Journal of computing in civil engineering</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>33</volume><issue>6</issue><issn>0887-3801</issn><eissn>1943-5487</eissn><abstract>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)CP.1943-5487.0000857</doi><orcidid>https://orcid.org/0000-0001-6059-5032</orcidid><orcidid>https://orcid.org/0000-0002-4550-4152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3801 |
ispartof | Journal of computing in civil engineering, 2019-11, Vol.33 (6) |
issn | 0887-3801 1943-5487 |
language | eng |
recordid | cdi_proquest_journals_2259930844 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Analytics Building design Computation Computer simulation Data analysis Diagnostic systems Empirical analysis Energy policy Federal agencies Information sharing Infrastructure Mathematical analysis Office buildings Performance measurement Schedules Technical Papers |
title | Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Computing%20Infrastructure%20for%20Sharing%20Data%20Analytics%20to%20Support%20Building%20Energy%20Simulations&rft.jtitle=Journal%20of%20computing%20in%20civil%20engineering&rft.au=Karaguzel,%20Omer%20T&rft.date=2019-11-01&rft.volume=33&rft.issue=6&rft.issn=0887-3801&rft.eissn=1943-5487&rft_id=info:doi/10.1061/(ASCE)CP.1943-5487.0000857&rft_dat=%3Cproquest_cross%3E2259930844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259930844&rft_id=info:pmid/&rfr_iscdi=true |