Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations

AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining emp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing in civil engineering 2019-11, Vol.33 (6)
Hauptverfasser: Karaguzel, Omer T, Elshambakey, Mohammed, Zhu, Yimin, Hong, Tianzhen, Tolone, William J, Das Bhattacharjee, Sreyasee, Cho, Isaac, Dou, Wenwen, Wang, Haopeng, Lu, Siliang, Khalefa, Mohamed, Tao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of computing in civil engineering
container_volume 33
creator Karaguzel, Omer T
Elshambakey, Mohammed
Zhu, Yimin
Hong, Tianzhen
Tolone, William J
Das Bhattacharjee, Sreyasee
Cho, Isaac
Dou, Wenwen
Wang, Haopeng
Lu, Siliang
Khalefa, Mohamed
Tao, Yong
description AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.
doi_str_mv 10.1061/(ASCE)CP.1943-5487.0000857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259930844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259930844</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKffIehFD51Jk6aJt1mnDgYbVM8ha9JZ2ZqaP4d9e1s29eR7Cbx5fj9eHgCuMZpgxPD97bQsZnfFaoIFJUlGeT5B_fAsPwGj390pGCHO84RwhM_BhfefPZOynI6AXHamhYXddTE07QbO29opH1ysQnQG1tbB8kO54etJBQWnrdruQ1N5GCwsY9dZF-BjbLZ6QGatcZs9LJtd3KrQ2NZfgrNabb25Or5j8P48eytek8XyZV5MF4kinIdEKFRzpnOGOUeZzpVYM8EzIRjRRGWUkEwJjNaKcaGZVjVla2qo1pRnNaMpGYObQ2_n7Fc0PshPG11_rJdp2vcQxCntqYcDVTnrvTO17FyzU24vMZKDUCkHobJYyUGeHOTJo9A-zA5h5SvzV_-T_D_4DT-5enI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259930844</pqid></control><display><type>article</type><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</creator><creatorcontrib>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</creatorcontrib><description>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</description><identifier>ISSN: 0887-3801</identifier><identifier>EISSN: 1943-5487</identifier><identifier>DOI: 10.1061/(ASCE)CP.1943-5487.0000857</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Analytics ; Building design ; Computation ; Computer simulation ; Data analysis ; Diagnostic systems ; Empirical analysis ; Energy policy ; Federal agencies ; Information sharing ; Infrastructure ; Mathematical analysis ; Office buildings ; Performance measurement ; Schedules ; Technical Papers</subject><ispartof>Journal of computing in civil engineering, 2019-11, Vol.33 (6)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</citedby><cites>FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</cites><orcidid>0000-0001-6059-5032 ; 0000-0002-4550-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)CP.1943-5487.0000857$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)CP.1943-5487.0000857$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76163,76171</link.rule.ids></links><search><creatorcontrib>Karaguzel, Omer T</creatorcontrib><creatorcontrib>Elshambakey, Mohammed</creatorcontrib><creatorcontrib>Zhu, Yimin</creatorcontrib><creatorcontrib>Hong, Tianzhen</creatorcontrib><creatorcontrib>Tolone, William J</creatorcontrib><creatorcontrib>Das Bhattacharjee, Sreyasee</creatorcontrib><creatorcontrib>Cho, Isaac</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><creatorcontrib>Wang, Haopeng</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><creatorcontrib>Khalefa, Mohamed</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><title>Journal of computing in civil engineering</title><description>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</description><subject>Analytics</subject><subject>Building design</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Diagnostic systems</subject><subject>Empirical analysis</subject><subject>Energy policy</subject><subject>Federal agencies</subject><subject>Information sharing</subject><subject>Infrastructure</subject><subject>Mathematical analysis</subject><subject>Office buildings</subject><subject>Performance measurement</subject><subject>Schedules</subject><subject>Technical Papers</subject><issn>0887-3801</issn><issn>1943-5487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoOKffIehFD51Jk6aJt1mnDgYbVM8ha9JZ2ZqaP4d9e1s29eR7Cbx5fj9eHgCuMZpgxPD97bQsZnfFaoIFJUlGeT5B_fAsPwGj390pGCHO84RwhM_BhfefPZOynI6AXHamhYXddTE07QbO29opH1ysQnQG1tbB8kO54etJBQWnrdruQ1N5GCwsY9dZF-BjbLZ6QGatcZs9LJtd3KrQ2NZfgrNabb25Or5j8P48eytek8XyZV5MF4kinIdEKFRzpnOGOUeZzpVYM8EzIRjRRGWUkEwJjNaKcaGZVjVla2qo1pRnNaMpGYObQ2_n7Fc0PshPG11_rJdp2vcQxCntqYcDVTnrvTO17FyzU24vMZKDUCkHobJYyUGeHOTJo9A-zA5h5SvzV_-T_D_4DT-5enI</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Karaguzel, Omer T</creator><creator>Elshambakey, Mohammed</creator><creator>Zhu, Yimin</creator><creator>Hong, Tianzhen</creator><creator>Tolone, William J</creator><creator>Das Bhattacharjee, Sreyasee</creator><creator>Cho, Isaac</creator><creator>Dou, Wenwen</creator><creator>Wang, Haopeng</creator><creator>Lu, Siliang</creator><creator>Khalefa, Mohamed</creator><creator>Tao, Yong</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6059-5032</orcidid><orcidid>https://orcid.org/0000-0002-4550-4152</orcidid></search><sort><creationdate>20191101</creationdate><title>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</title><author>Karaguzel, Omer T ; Elshambakey, Mohammed ; Zhu, Yimin ; Hong, Tianzhen ; Tolone, William J ; Das Bhattacharjee, Sreyasee ; Cho, Isaac ; Dou, Wenwen ; Wang, Haopeng ; Lu, Siliang ; Khalefa, Mohamed ; Tao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-9a0f86d7618805d7a9b69859963d3a54335a910ba689d6daf46b4e4dd485f6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytics</topic><topic>Building design</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Diagnostic systems</topic><topic>Empirical analysis</topic><topic>Energy policy</topic><topic>Federal agencies</topic><topic>Information sharing</topic><topic>Infrastructure</topic><topic>Mathematical analysis</topic><topic>Office buildings</topic><topic>Performance measurement</topic><topic>Schedules</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaguzel, Omer T</creatorcontrib><creatorcontrib>Elshambakey, Mohammed</creatorcontrib><creatorcontrib>Zhu, Yimin</creatorcontrib><creatorcontrib>Hong, Tianzhen</creatorcontrib><creatorcontrib>Tolone, William J</creatorcontrib><creatorcontrib>Das Bhattacharjee, Sreyasee</creatorcontrib><creatorcontrib>Cho, Isaac</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><creatorcontrib>Wang, Haopeng</creatorcontrib><creatorcontrib>Lu, Siliang</creatorcontrib><creatorcontrib>Khalefa, Mohamed</creatorcontrib><creatorcontrib>Tao, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computing in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaguzel, Omer T</au><au>Elshambakey, Mohammed</au><au>Zhu, Yimin</au><au>Hong, Tianzhen</au><au>Tolone, William J</au><au>Das Bhattacharjee, Sreyasee</au><au>Cho, Isaac</au><au>Dou, Wenwen</au><au>Wang, Haopeng</au><au>Lu, Siliang</au><au>Khalefa, Mohamed</au><au>Tao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations</atitle><jtitle>Journal of computing in civil engineering</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>33</volume><issue>6</issue><issn>0887-3801</issn><eissn>1943-5487</eissn><abstract>AbstractBuilding energy simulation plays an increasingly important role in building design and operation. This paper presents an open computing infrastructure, Virtual Information Fabric Infrastructure (VIFI), that allows building designers and engineers to enhance their simulations by combining empirical data with diagnostic or prognostic models. Based on the idea of dynamic data-driven application systems (DDDAS), the VIFI infrastructure complements conventional data-centric sharing strategies and addresses key data-sharing concerns such as the privacy of building occupants. To demonstrate the potential of the VIFI infrastructure, an empirically derived lighting schedule in the US Department of Energy’s small office building reference model is simulated. The case-study simulation is used to explore (1) the possibility and potential of integrating data-centric and analytic-centric sharing strategies; (2) the method of combining empirical data with simulations; (3) the creation, sharing, and execution of analytics using VIFI; and (4) the impact of incorporating empirical data on energy simulations. Although the case study reveals clear advantages of the VIFI data infrastructure, research questions remain surrounding the motivation and benefits for sharing data, the metadata that are required to support the composition of analytics, and the performance metrics that could be used in assessing the applications of VIFI.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)CP.1943-5487.0000857</doi><orcidid>https://orcid.org/0000-0001-6059-5032</orcidid><orcidid>https://orcid.org/0000-0002-4550-4152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3801
ispartof Journal of computing in civil engineering, 2019-11, Vol.33 (6)
issn 0887-3801
1943-5487
language eng
recordid cdi_proquest_journals_2259930844
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Analytics
Building design
Computation
Computer simulation
Data analysis
Diagnostic systems
Empirical analysis
Energy policy
Federal agencies
Information sharing
Infrastructure
Mathematical analysis
Office buildings
Performance measurement
Schedules
Technical Papers
title Open Computing Infrastructure for Sharing Data Analytics to Support Building Energy Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Computing%20Infrastructure%20for%20Sharing%20Data%20Analytics%20to%20Support%20Building%20Energy%20Simulations&rft.jtitle=Journal%20of%20computing%20in%20civil%20engineering&rft.au=Karaguzel,%20Omer%20T&rft.date=2019-11-01&rft.volume=33&rft.issue=6&rft.issn=0887-3801&rft.eissn=1943-5487&rft_id=info:doi/10.1061/(ASCE)CP.1943-5487.0000857&rft_dat=%3Cproquest_cross%3E2259930844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259930844&rft_id=info:pmid/&rfr_iscdi=true