Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover
We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariat...
Gespeichert in:
Veröffentlicht in: | Cellulose 2009, Vol.16 (4), p.567-576 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 567 |
container_title | Cellulose |
container_volume | 16 |
creator | Wolfrum, Edward J Sluiter, Amie D |
description | We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models. |
doi_str_mv | 10.1007/s10570-009-9320-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2259917257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259917257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhoMo9Gp9gK6a0nX0JJNMJssitRUEF1ZwFzLJGY2dO7lNcgXfvpEp2JWrcxbf93POT8gnDmccQJ8XDkoDAzDMdAKYOCAbrrRgwyDuD8kGTG8YiM58IMelPEEDteAbEq-2u5yeMdDtfq7x2eXoKlLv5jhmV2Na6DYFnAudUqY-5YWW2vhMJ8TQVv-buiXQEOd9ReZ8DHSXsWZsMeF_4SM5mtxc8PTfPCF3l99_Xfxk1zc_ri6-XTMvQVdmjOmUHNB71U8e-aBGJ33PjUB0wsOkJToYe3RdGN048V53XqogpHJCjqE7IV_W3FRqtMXHiv7Rp2VBX63pBylNY76uTPv9zx5LtU9pn5d2lhVCGcO1ULpRfKV8TqVknOwux63LL5aDfW3drq3bVqZ9bd2K5ojVKY1dHjC_Jb8nfV6lySXrHnIs9u5WAO-A96ob2il_AdCqkE4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259917257</pqid></control><display><type>article</type><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><source>Springer Nature - Complete Springer Journals</source><creator>Wolfrum, Edward J ; Sluiter, Amie D</creator><creatorcontrib>Wolfrum, Edward J ; Sluiter, Amie D ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-009-9320-2</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>09 BIOMASS FUELS ; ACCURACY ; AGRICULTURAL WASTES ; ALGORITHMS ; Bioenergy ; BIOMASS ; Bioorganic Chemistry ; CALIBRATION ; Ceramics ; CHEMICAL ANALYSIS ; Chemistry ; Chemistry and Materials Science ; Composites ; Corn ; Dilution ; Glass ; Glucan ; Glucose ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIGNIN ; MAIZE ; Multivariate analysis ; Multivariate statistical analysis ; Natural Materials ; Near infrared radiation ; Organic Chemistry ; Physical Chemistry ; Polymer Sciences ; Raw materials ; Statistical analysis ; Statistical methods ; Statistical significance ; Sustainable Development</subject><ispartof>Cellulose, 2009, Vol.16 (4), p.567-576</ispartof><rights>US Government 2009</rights><rights>Cellulose is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</citedby><cites>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-009-9320-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-009-9320-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/968449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfrum, Edward J</creatorcontrib><creatorcontrib>Sluiter, Amie D</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><title>Cellulose</title><addtitle>Cellulose</addtitle><description>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</description><subject>09 BIOMASS FUELS</subject><subject>ACCURACY</subject><subject>AGRICULTURAL WASTES</subject><subject>ALGORITHMS</subject><subject>Bioenergy</subject><subject>BIOMASS</subject><subject>Bioorganic Chemistry</subject><subject>CALIBRATION</subject><subject>Ceramics</subject><subject>CHEMICAL ANALYSIS</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corn</subject><subject>Dilution</subject><subject>Glass</subject><subject>Glucan</subject><subject>Glucose</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIGNIN</subject><subject>MAIZE</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Natural Materials</subject><subject>Near infrared radiation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical significance</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKHTEUhoMo9Gp9gK6a0nX0JJNMJssitRUEF1ZwFzLJGY2dO7lNcgXfvpEp2JWrcxbf93POT8gnDmccQJ8XDkoDAzDMdAKYOCAbrrRgwyDuD8kGTG8YiM58IMelPEEDteAbEq-2u5yeMdDtfq7x2eXoKlLv5jhmV2Na6DYFnAudUqY-5YWW2vhMJ8TQVv-buiXQEOd9ReZ8DHSXsWZsMeF_4SM5mtxc8PTfPCF3l99_Xfxk1zc_ri6-XTMvQVdmjOmUHNB71U8e-aBGJ33PjUB0wsOkJToYe3RdGN048V53XqogpHJCjqE7IV_W3FRqtMXHiv7Rp2VBX63pBylNY76uTPv9zx5LtU9pn5d2lhVCGcO1ULpRfKV8TqVknOwux63LL5aDfW3drq3bVqZ9bd2K5ojVKY1dHjC_Jb8nfV6lySXrHnIs9u5WAO-A96ob2il_AdCqkE4</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Wolfrum, Edward J</creator><creator>Sluiter, Amie D</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope></search><sort><creationdate>2009</creationdate><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><author>Wolfrum, Edward J ; Sluiter, Amie D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>ACCURACY</topic><topic>AGRICULTURAL WASTES</topic><topic>ALGORITHMS</topic><topic>Bioenergy</topic><topic>BIOMASS</topic><topic>Bioorganic Chemistry</topic><topic>CALIBRATION</topic><topic>Ceramics</topic><topic>CHEMICAL ANALYSIS</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corn</topic><topic>Dilution</topic><topic>Glass</topic><topic>Glucan</topic><topic>Glucose</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIGNIN</topic><topic>MAIZE</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Natural Materials</topic><topic>Near infrared radiation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical significance</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfrum, Edward J</creatorcontrib><creatorcontrib>Sluiter, Amie D</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>Cellulose</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfrum, Edward J</au><au>Sluiter, Amie D</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</atitle><jtitle>Cellulose</jtitle><stitle>Cellulose</stitle><date>2009</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10570-009-9320-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose, 2009, Vol.16 (4), p.567-576 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2259917257 |
source | Springer Nature - Complete Springer Journals |
subjects | 09 BIOMASS FUELS ACCURACY AGRICULTURAL WASTES ALGORITHMS Bioenergy BIOMASS Bioorganic Chemistry CALIBRATION Ceramics CHEMICAL ANALYSIS Chemistry Chemistry and Materials Science Composites Corn Dilution Glass Glucan Glucose INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY LIGNIN MAIZE Multivariate analysis Multivariate statistical analysis Natural Materials Near infrared radiation Organic Chemistry Physical Chemistry Polymer Sciences Raw materials Statistical analysis Statistical methods Statistical significance Sustainable Development |
title | Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multivariate%20calibration%20models%20for%20corn%20stover%20feedstock%20and%20dilute-acid%20pretreated%20corn%20stover&rft.jtitle=Cellulose&rft.au=Wolfrum,%20Edward%20J&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009&rft.volume=16&rft.issue=4&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-009-9320-2&rft_dat=%3Cproquest_osti_%3E2259917257%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259917257&rft_id=info:pmid/&rfr_iscdi=true |