Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover

We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose 2009, Vol.16 (4), p.567-576
Hauptverfasser: Wolfrum, Edward J, Sluiter, Amie D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 567
container_title Cellulose
container_volume 16
creator Wolfrum, Edward J
Sluiter, Amie D
description We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.
doi_str_mv 10.1007/s10570-009-9320-2
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2259917257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259917257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</originalsourceid><addsrcrecordid>eNp9kMFKHTEUhoMo9Gp9gK6a0nX0JJNMJssitRUEF1ZwFzLJGY2dO7lNcgXfvpEp2JWrcxbf93POT8gnDmccQJ8XDkoDAzDMdAKYOCAbrrRgwyDuD8kGTG8YiM58IMelPEEDteAbEq-2u5yeMdDtfq7x2eXoKlLv5jhmV2Na6DYFnAudUqY-5YWW2vhMJ8TQVv-buiXQEOd9ReZ8DHSXsWZsMeF_4SM5mtxc8PTfPCF3l99_Xfxk1zc_ri6-XTMvQVdmjOmUHNB71U8e-aBGJ33PjUB0wsOkJToYe3RdGN048V53XqogpHJCjqE7IV_W3FRqtMXHiv7Rp2VBX63pBylNY76uTPv9zx5LtU9pn5d2lhVCGcO1ULpRfKV8TqVknOwux63LL5aDfW3drq3bVqZ9bd2K5ojVKY1dHjC_Jb8nfV6lySXrHnIs9u5WAO-A96ob2il_AdCqkE4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259917257</pqid></control><display><type>article</type><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><source>Springer Nature - Complete Springer Journals</source><creator>Wolfrum, Edward J ; Sluiter, Amie D</creator><creatorcontrib>Wolfrum, Edward J ; Sluiter, Amie D ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-009-9320-2</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>09 BIOMASS FUELS ; ACCURACY ; AGRICULTURAL WASTES ; ALGORITHMS ; Bioenergy ; BIOMASS ; Bioorganic Chemistry ; CALIBRATION ; Ceramics ; CHEMICAL ANALYSIS ; Chemistry ; Chemistry and Materials Science ; Composites ; Corn ; Dilution ; Glass ; Glucan ; Glucose ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIGNIN ; MAIZE ; Multivariate analysis ; Multivariate statistical analysis ; Natural Materials ; Near infrared radiation ; Organic Chemistry ; Physical Chemistry ; Polymer Sciences ; Raw materials ; Statistical analysis ; Statistical methods ; Statistical significance ; Sustainable Development</subject><ispartof>Cellulose, 2009, Vol.16 (4), p.567-576</ispartof><rights>US Government 2009</rights><rights>Cellulose is a copyright of Springer, (2009). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</citedby><cites>FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-009-9320-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-009-9320-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/968449$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfrum, Edward J</creatorcontrib><creatorcontrib>Sluiter, Amie D</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><title>Cellulose</title><addtitle>Cellulose</addtitle><description>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</description><subject>09 BIOMASS FUELS</subject><subject>ACCURACY</subject><subject>AGRICULTURAL WASTES</subject><subject>ALGORITHMS</subject><subject>Bioenergy</subject><subject>BIOMASS</subject><subject>Bioorganic Chemistry</subject><subject>CALIBRATION</subject><subject>Ceramics</subject><subject>CHEMICAL ANALYSIS</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corn</subject><subject>Dilution</subject><subject>Glass</subject><subject>Glucan</subject><subject>Glucose</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIGNIN</subject><subject>MAIZE</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Natural Materials</subject><subject>Near infrared radiation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical significance</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFKHTEUhoMo9Gp9gK6a0nX0JJNMJssitRUEF1ZwFzLJGY2dO7lNcgXfvpEp2JWrcxbf93POT8gnDmccQJ8XDkoDAzDMdAKYOCAbrrRgwyDuD8kGTG8YiM58IMelPEEDteAbEq-2u5yeMdDtfq7x2eXoKlLv5jhmV2Na6DYFnAudUqY-5YWW2vhMJ8TQVv-buiXQEOd9ReZ8DHSXsWZsMeF_4SM5mtxc8PTfPCF3l99_Xfxk1zc_ri6-XTMvQVdmjOmUHNB71U8e-aBGJ33PjUB0wsOkJToYe3RdGN048V53XqogpHJCjqE7IV_W3FRqtMXHiv7Rp2VBX63pBylNY76uTPv9zx5LtU9pn5d2lhVCGcO1ULpRfKV8TqVknOwux63LL5aDfW3drq3bVqZ9bd2K5ojVKY1dHjC_Jb8nfV6lySXrHnIs9u5WAO-A96ob2il_AdCqkE4</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Wolfrum, Edward J</creator><creator>Sluiter, Amie D</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope></search><sort><creationdate>2009</creationdate><title>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</title><author>Wolfrum, Edward J ; Sluiter, Amie D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-9993548ecc56fce185ba4c6192eea2c0f74ea0b6ea3dbabf1673c45d245a24bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>ACCURACY</topic><topic>AGRICULTURAL WASTES</topic><topic>ALGORITHMS</topic><topic>Bioenergy</topic><topic>BIOMASS</topic><topic>Bioorganic Chemistry</topic><topic>CALIBRATION</topic><topic>Ceramics</topic><topic>CHEMICAL ANALYSIS</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corn</topic><topic>Dilution</topic><topic>Glass</topic><topic>Glucan</topic><topic>Glucose</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIGNIN</topic><topic>MAIZE</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Natural Materials</topic><topic>Near infrared radiation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical significance</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfrum, Edward J</creatorcontrib><creatorcontrib>Sluiter, Amie D</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>Cellulose</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfrum, Edward J</au><au>Sluiter, Amie D</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover</atitle><jtitle>Cellulose</jtitle><stitle>Cellulose</stitle><date>2009</date><risdate>2009</risdate><volume>16</volume><issue>4</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10570-009-9320-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose, 2009, Vol.16 (4), p.567-576
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2259917257
source Springer Nature - Complete Springer Journals
subjects 09 BIOMASS FUELS
ACCURACY
AGRICULTURAL WASTES
ALGORITHMS
Bioenergy
BIOMASS
Bioorganic Chemistry
CALIBRATION
Ceramics
CHEMICAL ANALYSIS
Chemistry
Chemistry and Materials Science
Composites
Corn
Dilution
Glass
Glucan
Glucose
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LIGNIN
MAIZE
Multivariate analysis
Multivariate statistical analysis
Natural Materials
Near infrared radiation
Organic Chemistry
Physical Chemistry
Polymer Sciences
Raw materials
Statistical analysis
Statistical methods
Statistical significance
Sustainable Development
title Improved multivariate calibration models for corn stover feedstock and dilute-acid pretreated corn stover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multivariate%20calibration%20models%20for%20corn%20stover%20feedstock%20and%20dilute-acid%20pretreated%20corn%20stover&rft.jtitle=Cellulose&rft.au=Wolfrum,%20Edward%20J&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009&rft.volume=16&rft.issue=4&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-009-9320-2&rft_dat=%3Cproquest_osti_%3E2259917257%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259917257&rft_id=info:pmid/&rfr_iscdi=true