Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals
In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2014, Vol.21 (5), p.3409-3426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3426 |
---|---|
container_issue | 5 |
container_start_page | 3409 |
container_title | Cellulose (London) |
container_volume | 21 |
creator | Kumar, Anuj Negi, Yuvraj Singh Choudhary, Veena Bhardwaj, Nishi Kant |
description | In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering. |
doi_str_mv | 10.1007/s10570-014-0339-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259912391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259912391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</originalsourceid><addsrcrecordid>eNp9kMFO3TAQRS3USrxCP6CrRmJb07GdxM4SoUKRqFhQJHaW49i8IL9MaicV-RD-F6ep1F1XI1vn3tEcQj4xOGcA8mtiUEmgwEoKQjRUHpEdqySnSvHHd2QHTd1Q4KI5Jh9SegaARnK2I68_ehsxTXG20xxNKMzQFQdn92bobX6OEUcXp96lAn0xYsQ5FW2PFg8jpn5yRbLGewxd_jbJdQUOGQvL735YcluwuMfwpRjMgHS_dBFfFjOaaU2uq6wLYQ6Y3B_CxiVNJqRT8t7n4T7-nSfk4erbz8vv9Pbu-uby4pZaIeVEjS2Vd162qpStqNu2BCnqxipZ-64UtiwFcAOcAeu8EZ5b542yXVtWlVdgxAk523rzmb9mlyb9jHMc8krNedU0LAtjmWIbtZpK0Xk9xv5g4qIZ6NW-3uzrbF-v9rXMGb5lUmaHJxf_Nf8v9HkLeYPaPMU-6Yd7ngEApqBWQrwBkJiWHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259912391</pqid></control><display><type>article</type><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><source>Springer Nature - Complete Springer Journals</source><creator>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</creator><creatorcontrib>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</creatorcontrib><description>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-014-0339-7</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Apatite ; Biocompatibility ; biocomposites ; Biomedical materials ; Bioorganic Chemistry ; Body fluids ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composites ; Compressive strength ; Crystallites ; Emission analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Glass ; Hydroxyapatite ; In vitro methods and tests ; Infrared analysis ; Mechanical properties ; Modulus of elasticity ; Nanocrystals ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Polyvinyl alcohol ; Porosity ; Scaffolding ; Scaffolds ; Scanning electron microscopy ; Surgical implants ; Sustainable Development ; Tissue engineering ; X-ray diffraction</subject><ispartof>Cellulose (London), 2014, Vol.21 (5), p.3409-3426</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Cellulose is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</citedby><cites>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-014-0339-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-014-0339-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Negi, Yuvraj Singh</creatorcontrib><creatorcontrib>Choudhary, Veena</creatorcontrib><creatorcontrib>Bhardwaj, Nishi Kant</creatorcontrib><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>biocomposites</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Body fluids</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Compressive strength</subject><subject>Crystallites</subject><subject>Emission analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Scaffolding</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Surgical implants</subject><subject>Sustainable Development</subject><subject>Tissue engineering</subject><subject>X-ray diffraction</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFO3TAQRS3USrxCP6CrRmJb07GdxM4SoUKRqFhQJHaW49i8IL9MaicV-RD-F6ep1F1XI1vn3tEcQj4xOGcA8mtiUEmgwEoKQjRUHpEdqySnSvHHd2QHTd1Q4KI5Jh9SegaARnK2I68_ehsxTXG20xxNKMzQFQdn92bobX6OEUcXp96lAn0xYsQ5FW2PFg8jpn5yRbLGewxd_jbJdQUOGQvL735YcluwuMfwpRjMgHS_dBFfFjOaaU2uq6wLYQ6Y3B_CxiVNJqRT8t7n4T7-nSfk4erbz8vv9Pbu-uby4pZaIeVEjS2Vd162qpStqNu2BCnqxipZ-64UtiwFcAOcAeu8EZ5b542yXVtWlVdgxAk523rzmb9mlyb9jHMc8krNedU0LAtjmWIbtZpK0Xk9xv5g4qIZ6NW-3uzrbF-v9rXMGb5lUmaHJxf_Nf8v9HkLeYPaPMU-6Yd7ngEApqBWQrwBkJiWHg</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kumar, Anuj</creator><creator>Negi, Yuvraj Singh</creator><creator>Choudhary, Veena</creator><creator>Bhardwaj, Nishi Kant</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2014</creationdate><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><author>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>biocomposites</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Body fluids</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Compressive strength</topic><topic>Crystallites</topic><topic>Emission analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Scaffolding</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Surgical implants</topic><topic>Sustainable Development</topic><topic>Tissue engineering</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Negi, Yuvraj Singh</creatorcontrib><creatorcontrib>Choudhary, Veena</creatorcontrib><creatorcontrib>Bhardwaj, Nishi Kant</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Negi, Yuvraj Singh</au><au>Choudhary, Veena</au><au>Bhardwaj, Nishi Kant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>5</issue><spage>3409</spage><epage>3426</epage><pages>3409-3426</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10570-014-0339-7</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2014, Vol.21 (5), p.3409-3426 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2259912391 |
source | Springer Nature - Complete Springer Journals |
subjects | Apatite Biocompatibility biocomposites Biomedical materials Bioorganic Chemistry Body fluids Cellulose Ceramics Chemistry Chemistry and Materials Science Composite materials Composites Compressive strength Crystallites Emission analysis Fourier transform infrared spectroscopy Fourier transforms Glass Hydroxyapatite In vitro methods and tests Infrared analysis Mechanical properties Modulus of elasticity Nanocrystals Natural Materials Organic Chemistry Original Paper Physical Chemistry Polymer Sciences Polyvinyl alcohol Porosity Scaffolding Scaffolds Scanning electron microscopy Surgical implants Sustainable Development Tissue engineering X-ray diffraction |
title | Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20mechanical%20properties%20of%20porous%20biocomposite%20scaffolds%20based%20on%20polyvinyl%20alcohol,%20nano-hydroxyapatite%20and%20cellulose%20nanocrystals&rft.jtitle=Cellulose%20(London)&rft.au=Kumar,%20Anuj&rft.date=2014&rft.volume=21&rft.issue=5&rft.spage=3409&rft.epage=3426&rft.pages=3409-3426&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-014-0339-7&rft_dat=%3Cproquest_cross%3E2259912391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259912391&rft_id=info:pmid/&rfr_iscdi=true |