Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals

In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2014, Vol.21 (5), p.3409-3426
Hauptverfasser: Kumar, Anuj, Negi, Yuvraj Singh, Choudhary, Veena, Bhardwaj, Nishi Kant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3426
container_issue 5
container_start_page 3409
container_title Cellulose (London)
container_volume 21
creator Kumar, Anuj
Negi, Yuvraj Singh
Choudhary, Veena
Bhardwaj, Nishi Kant
description In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.
doi_str_mv 10.1007/s10570-014-0339-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259912391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259912391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</originalsourceid><addsrcrecordid>eNp9kMFO3TAQRS3USrxCP6CrRmJb07GdxM4SoUKRqFhQJHaW49i8IL9MaicV-RD-F6ep1F1XI1vn3tEcQj4xOGcA8mtiUEmgwEoKQjRUHpEdqySnSvHHd2QHTd1Q4KI5Jh9SegaARnK2I68_ehsxTXG20xxNKMzQFQdn92bobX6OEUcXp96lAn0xYsQ5FW2PFg8jpn5yRbLGewxd_jbJdQUOGQvL735YcluwuMfwpRjMgHS_dBFfFjOaaU2uq6wLYQ6Y3B_CxiVNJqRT8t7n4T7-nSfk4erbz8vv9Pbu-uby4pZaIeVEjS2Vd162qpStqNu2BCnqxipZ-64UtiwFcAOcAeu8EZ5b542yXVtWlVdgxAk523rzmb9mlyb9jHMc8krNedU0LAtjmWIbtZpK0Xk9xv5g4qIZ6NW-3uzrbF-v9rXMGb5lUmaHJxf_Nf8v9HkLeYPaPMU-6Yd7ngEApqBWQrwBkJiWHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259912391</pqid></control><display><type>article</type><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><source>Springer Nature - Complete Springer Journals</source><creator>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</creator><creatorcontrib>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</creatorcontrib><description>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-014-0339-7</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Apatite ; Biocompatibility ; biocomposites ; Biomedical materials ; Bioorganic Chemistry ; Body fluids ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Composites ; Compressive strength ; Crystallites ; Emission analysis ; Fourier transform infrared spectroscopy ; Fourier transforms ; Glass ; Hydroxyapatite ; In vitro methods and tests ; Infrared analysis ; Mechanical properties ; Modulus of elasticity ; Nanocrystals ; Natural Materials ; Organic Chemistry ; Original Paper ; Physical Chemistry ; Polymer Sciences ; Polyvinyl alcohol ; Porosity ; Scaffolding ; Scaffolds ; Scanning electron microscopy ; Surgical implants ; Sustainable Development ; Tissue engineering ; X-ray diffraction</subject><ispartof>Cellulose (London), 2014, Vol.21 (5), p.3409-3426</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Cellulose is a copyright of Springer, (2014). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</citedby><cites>FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-014-0339-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-014-0339-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Negi, Yuvraj Singh</creatorcontrib><creatorcontrib>Choudhary, Veena</creatorcontrib><creatorcontrib>Bhardwaj, Nishi Kant</creatorcontrib><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>biocomposites</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Body fluids</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Compressive strength</subject><subject>Crystallites</subject><subject>Emission analysis</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Scaffolding</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Surgical implants</subject><subject>Sustainable Development</subject><subject>Tissue engineering</subject><subject>X-ray diffraction</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFO3TAQRS3USrxCP6CrRmJb07GdxM4SoUKRqFhQJHaW49i8IL9MaicV-RD-F6ep1F1XI1vn3tEcQj4xOGcA8mtiUEmgwEoKQjRUHpEdqySnSvHHd2QHTd1Q4KI5Jh9SegaARnK2I68_ehsxTXG20xxNKMzQFQdn92bobX6OEUcXp96lAn0xYsQ5FW2PFg8jpn5yRbLGewxd_jbJdQUOGQvL735YcluwuMfwpRjMgHS_dBFfFjOaaU2uq6wLYQ6Y3B_CxiVNJqRT8t7n4T7-nSfk4erbz8vv9Pbu-uby4pZaIeVEjS2Vd162qpStqNu2BCnqxipZ-64UtiwFcAOcAeu8EZ5b542yXVtWlVdgxAk523rzmb9mlyb9jHMc8krNedU0LAtjmWIbtZpK0Xk9xv5g4qIZ6NW-3uzrbF-v9rXMGb5lUmaHJxf_Nf8v9HkLeYPaPMU-6Yd7ngEApqBWQrwBkJiWHg</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kumar, Anuj</creator><creator>Negi, Yuvraj Singh</creator><creator>Choudhary, Veena</creator><creator>Bhardwaj, Nishi Kant</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2014</creationdate><title>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</title><author>Kumar, Anuj ; Negi, Yuvraj Singh ; Choudhary, Veena ; Bhardwaj, Nishi Kant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ac48fef7b847b36bb407369c876fd43c44302a02101dfa3f2cefa8cdb455f80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>biocomposites</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Body fluids</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Compressive strength</topic><topic>Crystallites</topic><topic>Emission analysis</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Scaffolding</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Surgical implants</topic><topic>Sustainable Development</topic><topic>Tissue engineering</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Anuj</creatorcontrib><creatorcontrib>Negi, Yuvraj Singh</creatorcontrib><creatorcontrib>Choudhary, Veena</creatorcontrib><creatorcontrib>Bhardwaj, Nishi Kant</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Anuj</au><au>Negi, Yuvraj Singh</au><au>Choudhary, Veena</au><au>Bhardwaj, Nishi Kant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2014</date><risdate>2014</risdate><volume>21</volume><issue>5</issue><spage>3409</spage><epage>3426</epage><pages>3409-3426</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>In this study, in situ synthesis of polyvinyl alcohol (PVA)/nano-hydroxyapatite (n-HA)/cellulose nanocrystals (CNC) organic–inorganic biocomposite porous scaffolds is reported. The effect of the CNC content on the properties of the biocomposite scaffold was investigated and characterized using field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, porosity and compressive strength measurements, thermal studies, and in vitro biomineralization and degradation studies. The morphological study showed highly porous structures with good pore interconnectivity in which n-HA was homogeneously dispersed. XRD analysis showed a decrease in the crystalline fraction and crystallite size of nano-hydroxyapatite with introduction of PVA and with increasing content of CNC. It was observed that the porosity decreased to some extent with increasing CNC content, while increases in the compressive strength (from 0.85 to 2.09 MPa) and elastic modulus (from 4.68 to 16.01 MPa) were found as the CNC content was increased. In vitro biomineralization study revealed the formation of apatite on PVA/n-HA/CNC biocomposite scaffolds when soaked for 7 and 14 days in simulated body fluid (SBF) solution. The obtained porous scaffolds offering good mechanical performance may provide a promising alternative scaffolding matrix for use in the field of bone tissue engineering.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s10570-014-0339-7</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2014, Vol.21 (5), p.3409-3426
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2259912391
source Springer Nature - Complete Springer Journals
subjects Apatite
Biocompatibility
biocomposites
Biomedical materials
Bioorganic Chemistry
Body fluids
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Composite materials
Composites
Compressive strength
Crystallites
Emission analysis
Fourier transform infrared spectroscopy
Fourier transforms
Glass
Hydroxyapatite
In vitro methods and tests
Infrared analysis
Mechanical properties
Modulus of elasticity
Nanocrystals
Natural Materials
Organic Chemistry
Original Paper
Physical Chemistry
Polymer Sciences
Polyvinyl alcohol
Porosity
Scaffolding
Scaffolds
Scanning electron microscopy
Surgical implants
Sustainable Development
Tissue engineering
X-ray diffraction
title Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20and%20mechanical%20properties%20of%20porous%20biocomposite%20scaffolds%20based%20on%20polyvinyl%20alcohol,%20nano-hydroxyapatite%20and%20cellulose%20nanocrystals&rft.jtitle=Cellulose%20(London)&rft.au=Kumar,%20Anuj&rft.date=2014&rft.volume=21&rft.issue=5&rft.spage=3409&rft.epage=3426&rft.pages=3409-3426&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-014-0339-7&rft_dat=%3Cproquest_cross%3E2259912391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259912391&rft_id=info:pmid/&rfr_iscdi=true