Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction

A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2018-05, Vol.211 (1-2), p.163-182
Hauptverfasser: Vodička, Roman, Kormaníková, Eva, Kšiňan, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1-2
container_start_page 163
container_title International journal of fracture
container_volume 211
creator Vodička, Roman
Kormaníková, Eva
Kšiňan, Filip
description A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.
doi_str_mv 10.1007/s10704-018-0281-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259831903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042801071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKs_wFvAc3Ty0f04SvGjUPCi55BNZmtKd1OTXaX99aZU8KSnOczzPgPzEnLN4ZYDlHeJQwmKAa8YiIqz_QmZ8FkpmShKeUomIMuC1UrU5-QipTUA1GWlJuRz0Q8YW2O92VCHTehdoqGlG7PDiI6a3qcwxLD1lnYmo5lLdEy-X1FDP0aTPEuDGfLa_5iQOtOZFdIuONzQLz-803kYN6FraBu9HXzoL8lZm0V49TOn5O3x4XX-zJYvT4v5_ZJZqdTAlJAGpeBNZXHGS1VyEKJtawfOWVEYIYRCp3iNinOBBTRYuAYa09oGrXVySm6O3m0MHyOmQa_DGPt8UgsxqyvJa5D_UqBEBfm5PFP8SNkYUorY6m30nYk7zUEfStDHEnQuQR9K0PucEcdMymy_wvhr_jv0DaZMjEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259831903</pqid></control><display><type>article</type><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><source>Springer Nature - Complete Springer Journals</source><creator>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</creator><creatorcontrib>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</creatorcontrib><description>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-018-0281-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Automotive Engineering ; Boundary element method ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Contact pressure ; Coulomb friction ; Damage ; Damage assessment ; Friction ; Galerkin method ; Materials Science ; Mathematical models ; Mechanical Engineering ; Optimization ; Original Paper ; Quadratic programming</subject><ispartof>International journal of fracture, 2018-05, Vol.211 (1-2), p.163-182</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>International Journal of Fracture is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</citedby><cites>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</cites><orcidid>0000-0002-7702-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-018-0281-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-018-0281-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vodička, Roman</creatorcontrib><creatorcontrib>Kormaníková, Eva</creatorcontrib><creatorcontrib>Kšiňan, Filip</creatorcontrib><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</description><subject>Anisotropy</subject><subject>Automotive Engineering</subject><subject>Boundary element method</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Contact pressure</subject><subject>Coulomb friction</subject><subject>Damage</subject><subject>Damage assessment</subject><subject>Friction</subject><subject>Galerkin method</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Quadratic programming</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LAzEQhoMoWKs_wFvAc3Ty0f04SvGjUPCi55BNZmtKd1OTXaX99aZU8KSnOczzPgPzEnLN4ZYDlHeJQwmKAa8YiIqz_QmZ8FkpmShKeUomIMuC1UrU5-QipTUA1GWlJuRz0Q8YW2O92VCHTehdoqGlG7PDiI6a3qcwxLD1lnYmo5lLdEy-X1FDP0aTPEuDGfLa_5iQOtOZFdIuONzQLz-803kYN6FraBu9HXzoL8lZm0V49TOn5O3x4XX-zJYvT4v5_ZJZqdTAlJAGpeBNZXHGS1VyEKJtawfOWVEYIYRCp3iNinOBBTRYuAYa09oGrXVySm6O3m0MHyOmQa_DGPt8UgsxqyvJa5D_UqBEBfm5PFP8SNkYUorY6m30nYk7zUEfStDHEnQuQR9K0PucEcdMymy_wvhr_jv0DaZMjEQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Vodička, Roman</creator><creator>Kormaníková, Eva</creator><creator>Kšiňan, Filip</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7702-3126</orcidid></search><sort><creationdate>20180501</creationdate><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><author>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Automotive Engineering</topic><topic>Boundary element method</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Contact pressure</topic><topic>Coulomb friction</topic><topic>Damage</topic><topic>Damage assessment</topic><topic>Friction</topic><topic>Galerkin method</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodička, Roman</creatorcontrib><creatorcontrib>Kormaníková, Eva</creatorcontrib><creatorcontrib>Kšiňan, Filip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodička, Roman</au><au>Kormaníková, Eva</au><au>Kšiňan, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>211</volume><issue>1-2</issue><spage>163</spage><epage>182</epage><pages>163-182</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-018-0281-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7702-3126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2018-05, Vol.211 (1-2), p.163-182
issn 0376-9429
1573-2673
language eng
recordid cdi_proquest_journals_2259831903
source Springer Nature - Complete Springer Journals
subjects Anisotropy
Automotive Engineering
Boundary element method
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Contact pressure
Coulomb friction
Damage
Damage assessment
Friction
Galerkin method
Materials Science
Mathematical models
Mechanical Engineering
Optimization
Original Paper
Quadratic programming
title Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20debonds%20of%20layered%20anisotropic%20materials%20using%20a%20quasi-static%20interface%20damage%20model%20with%20Coulomb%20friction&rft.jtitle=International%20journal%20of%20fracture&rft.au=Vodi%C4%8Dka,%20Roman&rft.date=2018-05-01&rft.volume=211&rft.issue=1-2&rft.spage=163&rft.epage=182&rft.pages=163-182&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-018-0281-z&rft_dat=%3Cproquest_cross%3E2042801071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259831903&rft_id=info:pmid/&rfr_iscdi=true