Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction
A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 2018-05, Vol.211 (1-2), p.163-182 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1-2 |
container_start_page | 163 |
container_title | International journal of fracture |
container_volume | 211 |
creator | Vodička, Roman Kormaníková, Eva Kšiňan, Filip |
description | A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model. |
doi_str_mv | 10.1007/s10704-018-0281-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259831903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042801071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKs_wFvAc3Ty0f04SvGjUPCi55BNZmtKd1OTXaX99aZU8KSnOczzPgPzEnLN4ZYDlHeJQwmKAa8YiIqz_QmZ8FkpmShKeUomIMuC1UrU5-QipTUA1GWlJuRz0Q8YW2O92VCHTehdoqGlG7PDiI6a3qcwxLD1lnYmo5lLdEy-X1FDP0aTPEuDGfLa_5iQOtOZFdIuONzQLz-803kYN6FraBu9HXzoL8lZm0V49TOn5O3x4XX-zJYvT4v5_ZJZqdTAlJAGpeBNZXHGS1VyEKJtawfOWVEYIYRCp3iNinOBBTRYuAYa09oGrXVySm6O3m0MHyOmQa_DGPt8UgsxqyvJa5D_UqBEBfm5PFP8SNkYUorY6m30nYk7zUEfStDHEnQuQR9K0PucEcdMymy_wvhr_jv0DaZMjEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259831903</pqid></control><display><type>article</type><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><source>Springer Nature - Complete Springer Journals</source><creator>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</creator><creatorcontrib>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</creatorcontrib><description>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-018-0281-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Automotive Engineering ; Boundary element method ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Civil Engineering ; Classical Mechanics ; Contact pressure ; Coulomb friction ; Damage ; Damage assessment ; Friction ; Galerkin method ; Materials Science ; Mathematical models ; Mechanical Engineering ; Optimization ; Original Paper ; Quadratic programming</subject><ispartof>International journal of fracture, 2018-05, Vol.211 (1-2), p.163-182</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>International Journal of Fracture is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</citedby><cites>FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</cites><orcidid>0000-0002-7702-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-018-0281-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-018-0281-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vodička, Roman</creatorcontrib><creatorcontrib>Kormaníková, Eva</creatorcontrib><creatorcontrib>Kšiňan, Filip</creatorcontrib><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</description><subject>Anisotropy</subject><subject>Automotive Engineering</subject><subject>Boundary element method</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Contact pressure</subject><subject>Coulomb friction</subject><subject>Damage</subject><subject>Damage assessment</subject><subject>Friction</subject><subject>Galerkin method</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Quadratic programming</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LAzEQhoMoWKs_wFvAc3Ty0f04SvGjUPCi55BNZmtKd1OTXaX99aZU8KSnOczzPgPzEnLN4ZYDlHeJQwmKAa8YiIqz_QmZ8FkpmShKeUomIMuC1UrU5-QipTUA1GWlJuRz0Q8YW2O92VCHTehdoqGlG7PDiI6a3qcwxLD1lnYmo5lLdEy-X1FDP0aTPEuDGfLa_5iQOtOZFdIuONzQLz-803kYN6FraBu9HXzoL8lZm0V49TOn5O3x4XX-zJYvT4v5_ZJZqdTAlJAGpeBNZXHGS1VyEKJtawfOWVEYIYRCp3iNinOBBTRYuAYa09oGrXVySm6O3m0MHyOmQa_DGPt8UgsxqyvJa5D_UqBEBfm5PFP8SNkYUorY6m30nYk7zUEfStDHEnQuQR9K0PucEcdMymy_wvhr_jv0DaZMjEQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Vodička, Roman</creator><creator>Kormaníková, Eva</creator><creator>Kšiňan, Filip</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7702-3126</orcidid></search><sort><creationdate>20180501</creationdate><title>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</title><author>Vodička, Roman ; Kormaníková, Eva ; Kšiňan, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-423ae321b8ce517471022ff9d0ddc26a2224ed419e4112e60be6db0bafcbeccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Automotive Engineering</topic><topic>Boundary element method</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Contact pressure</topic><topic>Coulomb friction</topic><topic>Damage</topic><topic>Damage assessment</topic><topic>Friction</topic><topic>Galerkin method</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodička, Roman</creatorcontrib><creatorcontrib>Kormaníková, Eva</creatorcontrib><creatorcontrib>Kšiňan, Filip</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodička, Roman</au><au>Kormaníková, Eva</au><au>Kšiňan, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>211</volume><issue>1-2</issue><spage>163</spage><epage>182</epage><pages>163-182</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>A new quasi-static and energy based formulation of an interface damage model which includes Coulomb friction at the interface between anisotropic solids is provided. The interface traction-relative displacement response is based on an assumption of a thin adhesive layer whose behaviour is analogous to cohesive zone models. The damaged interface is considered, if exposed to a pressure, as a contact zone where Coulomb friction law is also taken into account. As the contacting solids are generally anisotropic, the friction may exhibit some anisotropic behaviour, too, which is included into the proposed model. The solution of the problem is sought numerically by a semi-implicit time-stepping procedure which uses recursive decoupled double minimisation in displacements and damage variables. The spatial discretisation is based on the symmetric Galerkin boundary-element method of a multidomain problem, where the interface variables are calculated by sequential quadratic programming, being a tool for resolving each partial minimisation in the proposed recursive scheme. Sample numerical examples demonstrate applicability of the described model.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-018-0281-z</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7702-3126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2018-05, Vol.211 (1-2), p.163-182 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_journals_2259831903 |
source | Springer Nature - Complete Springer Journals |
subjects | Anisotropy Automotive Engineering Boundary element method Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Contact pressure Coulomb friction Damage Damage assessment Friction Galerkin method Materials Science Mathematical models Mechanical Engineering Optimization Original Paper Quadratic programming |
title | Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20debonds%20of%20layered%20anisotropic%20materials%20using%20a%20quasi-static%20interface%20damage%20model%20with%20Coulomb%20friction&rft.jtitle=International%20journal%20of%20fracture&rft.au=Vodi%C4%8Dka,%20Roman&rft.date=2018-05-01&rft.volume=211&rft.issue=1-2&rft.spage=163&rft.epage=182&rft.pages=163-182&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-018-0281-z&rft_dat=%3Cproquest_cross%3E2042801071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259831903&rft_id=info:pmid/&rfr_iscdi=true |