Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops
The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO₃) leaching measurements and soil N b...
Gespeichert in:
Veröffentlicht in: | Nutrient cycling in agroecosystems 2009-07, Vol.84 (3), p.281-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO₃) leaching measurements and soil N balances. A 2[fraction one-half]-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural ¹⁵N abundance technique was used to determine grain legume N₂ fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m⁻²) compared to lupin (950 g m⁻²), pea (850 g m⁻²) and oat (1,100 g m⁻²) independent of the catch crop strategy. Faba bean derived more than 90% of its N from N₂ fixation, which was unusually high as compared to lupin (70-75%) and pea (50-60%). No effect of preceding crop was observed on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from the lysimeters, and measured N-accumulation from the leguminous species, as N-fixation minus N removed in grains including total N accumulation belowground according to Mayer et al. (2003a). Negative soil N balances for pea, lupin and oat indicated soil N depletion, but a positive faba bean soil N balance (11 g N m⁻²) after harvest indicated that more soil mineral N may have been available for subsequent cereals. However, the plant available N may have been taken up by the grass dominated grass-clover catch crop which together with microbial N immobilization and N losses could leave limited amounts of available N for uptake by the subsequent two cereal crops. |
---|---|
ISSN: | 1385-1314 1573-0867 |
DOI: | 10.1007/s10705-008-9242-7 |