Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers
Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high...
Gespeichert in:
Veröffentlicht in: | Genetic resources and crop evolution 2017-12, Vol.64 (8), p.2083-2091 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2091 |
---|---|
container_issue | 8 |
container_start_page | 2083 |
container_title | Genetic resources and crop evolution |
container_volume | 64 |
creator | Salgado, Paola Prinz, Kathleen Finkeldey, Reiner Ramírez, Claudio C. Vogel, Hermine |
description | Aristotelia chilensis
(Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding. |
doi_str_mv | 10.1007/s10722-017-0498-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259767654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959273369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGyWWGAIXP_HY4UoIFWCAWbLSRxwSePWTpHYeBB4OZ4EV2Vggeku3_muzkHomMA5AVAXiYCitACiCuC6LGAHjYhQrBAE9C4agaai0KXk--ggpTkAaCXLEQrXrneDr_Grjd5WvvPDGw4tnkSfhjC4zltcP_vO9cknfPr1_rGwq7X_ev88w5VNrsGhx5Pp7B7bvslkF2JYdjYNeOHrGJLNiux0eGHji4vpEO21tkvu6OeO0eP06uHyppjdXd9eTmZFzTgfCq3Lpqa8tFpIxgiXWttKMWlLSmglLdeqrLiGpqECZE0a19q6lUCZliBYzcboZOtdxrBauzSYeVjHPr80lIrcXUnB_6OIFpoqxqTOFNlSm0IputYso8993gwBs1nfbNc3eX2zWd9AztBtJmW2f3Lxl_nP0DfxEoh-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259767654</pqid></control><display><type>article</type><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><source>Springer Nature - Complete Springer Journals</source><creator>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</creator><creatorcontrib>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</creatorcontrib><description>Aristotelia chilensis
(Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-017-0498-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Amplified fragment length polymorphism ; Antioxidants ; Bayesian analysis ; Biomedical and Life Sciences ; Breeding ; Chloroplasts ; Genetic analysis ; Genetic markers ; Genetic variability ; Haplotypes ; Indigenous species ; Life Sciences ; Microsatellites ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Plant species ; Plant Systematics/Taxonomy/Biogeography ; Population genetics ; Populations ; Primers ; Research Article ; Sustainable production</subject><ispartof>Genetic resources and crop evolution, 2017-12, Vol.64 (8), p.2083-2091</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Genetic Resources and Crop Evolution is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</citedby><cites>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</cites><orcidid>0000-0003-0072-4239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-017-0498-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-017-0498-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salgado, Paola</creatorcontrib><creatorcontrib>Prinz, Kathleen</creatorcontrib><creatorcontrib>Finkeldey, Reiner</creatorcontrib><creatorcontrib>Ramírez, Claudio C.</creatorcontrib><creatorcontrib>Vogel, Hermine</creatorcontrib><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Aristotelia chilensis
(Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</description><subject>Agriculture</subject><subject>Amplified fragment length polymorphism</subject><subject>Antioxidants</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Chloroplasts</subject><subject>Genetic analysis</subject><subject>Genetic markers</subject><subject>Genetic variability</subject><subject>Haplotypes</subject><subject>Indigenous species</subject><subject>Life Sciences</subject><subject>Microsatellites</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Primers</subject><subject>Research Article</subject><subject>Sustainable production</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAGyWWGAIXP_HY4UoIFWCAWbLSRxwSePWTpHYeBB4OZ4EV2Vggeku3_muzkHomMA5AVAXiYCitACiCuC6LGAHjYhQrBAE9C4agaai0KXk--ggpTkAaCXLEQrXrneDr_Grjd5WvvPDGw4tnkSfhjC4zltcP_vO9cknfPr1_rGwq7X_ev88w5VNrsGhx5Pp7B7bvslkF2JYdjYNeOHrGJLNiux0eGHji4vpEO21tkvu6OeO0eP06uHyppjdXd9eTmZFzTgfCq3Lpqa8tFpIxgiXWttKMWlLSmglLdeqrLiGpqECZE0a19q6lUCZliBYzcboZOtdxrBauzSYeVjHPr80lIrcXUnB_6OIFpoqxqTOFNlSm0IputYso8993gwBs1nfbNc3eX2zWd9AztBtJmW2f3Lxl_nP0DfxEoh-</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Salgado, Paola</creator><creator>Prinz, Kathleen</creator><creator>Finkeldey, Reiner</creator><creator>Ramírez, Claudio C.</creator><creator>Vogel, Hermine</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0072-4239</orcidid></search><sort><creationdate>20171201</creationdate><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><author>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Amplified fragment length polymorphism</topic><topic>Antioxidants</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Chloroplasts</topic><topic>Genetic analysis</topic><topic>Genetic markers</topic><topic>Genetic variability</topic><topic>Haplotypes</topic><topic>Indigenous species</topic><topic>Life Sciences</topic><topic>Microsatellites</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Primers</topic><topic>Research Article</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salgado, Paola</creatorcontrib><creatorcontrib>Prinz, Kathleen</creatorcontrib><creatorcontrib>Finkeldey, Reiner</creatorcontrib><creatorcontrib>Ramírez, Claudio C.</creatorcontrib><creatorcontrib>Vogel, Hermine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado, Paola</au><au>Prinz, Kathleen</au><au>Finkeldey, Reiner</au><au>Ramírez, Claudio C.</au><au>Vogel, Hermine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>2083</spage><epage>2091</epage><pages>2083-2091</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Aristotelia chilensis
(Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-017-0498-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0072-4239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9864 |
ispartof | Genetic resources and crop evolution, 2017-12, Vol.64 (8), p.2083-2091 |
issn | 0925-9864 1573-5109 |
language | eng |
recordid | cdi_proquest_journals_2259767654 |
source | Springer Nature - Complete Springer Journals |
subjects | Agriculture Amplified fragment length polymorphism Antioxidants Bayesian analysis Biomedical and Life Sciences Breeding Chloroplasts Genetic analysis Genetic markers Genetic variability Haplotypes Indigenous species Life Sciences Microsatellites Plant Genetics and Genomics Plant Physiology Plant Sciences Plant species Plant Systematics/Taxonomy/Biogeography Population genetics Populations Primers Research Article Sustainable production |
title | Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variability%20of%20Aristotelia%20chilensis%20(%E2%80%9Cmaqui%E2%80%9D)%20based%20on%20AFLP%20and%20chloroplast%20microsatellite%20markers&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Salgado,%20Paola&rft.date=2017-12-01&rft.volume=64&rft.issue=8&rft.spage=2083&rft.epage=2091&rft.pages=2083-2091&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-017-0498-0&rft_dat=%3Cproquest_cross%3E1959273369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259767654&rft_id=info:pmid/&rfr_iscdi=true |