Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers

Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic resources and crop evolution 2017-12, Vol.64 (8), p.2083-2091
Hauptverfasser: Salgado, Paola, Prinz, Kathleen, Finkeldey, Reiner, Ramírez, Claudio C., Vogel, Hermine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2091
container_issue 8
container_start_page 2083
container_title Genetic resources and crop evolution
container_volume 64
creator Salgado, Paola
Prinz, Kathleen
Finkeldey, Reiner
Ramírez, Claudio C.
Vogel, Hermine
description Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.
doi_str_mv 10.1007/s10722-017-0498-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259767654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1959273369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGyWWGAIXP_HY4UoIFWCAWbLSRxwSePWTpHYeBB4OZ4EV2Vggeku3_muzkHomMA5AVAXiYCitACiCuC6LGAHjYhQrBAE9C4agaai0KXk--ggpTkAaCXLEQrXrneDr_Grjd5WvvPDGw4tnkSfhjC4zltcP_vO9cknfPr1_rGwq7X_ev88w5VNrsGhx5Pp7B7bvslkF2JYdjYNeOHrGJLNiux0eGHji4vpEO21tkvu6OeO0eP06uHyppjdXd9eTmZFzTgfCq3Lpqa8tFpIxgiXWttKMWlLSmglLdeqrLiGpqECZE0a19q6lUCZliBYzcboZOtdxrBauzSYeVjHPr80lIrcXUnB_6OIFpoqxqTOFNlSm0IputYso8993gwBs1nfbNc3eX2zWd9AztBtJmW2f3Lxl_nP0DfxEoh-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259767654</pqid></control><display><type>article</type><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><source>Springer Nature - Complete Springer Journals</source><creator>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</creator><creatorcontrib>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</creatorcontrib><description>Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</description><identifier>ISSN: 0925-9864</identifier><identifier>EISSN: 1573-5109</identifier><identifier>DOI: 10.1007/s10722-017-0498-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Amplified fragment length polymorphism ; Antioxidants ; Bayesian analysis ; Biomedical and Life Sciences ; Breeding ; Chloroplasts ; Genetic analysis ; Genetic markers ; Genetic variability ; Haplotypes ; Indigenous species ; Life Sciences ; Microsatellites ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Plant species ; Plant Systematics/Taxonomy/Biogeography ; Population genetics ; Populations ; Primers ; Research Article ; Sustainable production</subject><ispartof>Genetic resources and crop evolution, 2017-12, Vol.64 (8), p.2083-2091</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Genetic Resources and Crop Evolution is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</citedby><cites>FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</cites><orcidid>0000-0003-0072-4239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10722-017-0498-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10722-017-0498-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Salgado, Paola</creatorcontrib><creatorcontrib>Prinz, Kathleen</creatorcontrib><creatorcontrib>Finkeldey, Reiner</creatorcontrib><creatorcontrib>Ramírez, Claudio C.</creatorcontrib><creatorcontrib>Vogel, Hermine</creatorcontrib><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><title>Genetic resources and crop evolution</title><addtitle>Genet Resour Crop Evol</addtitle><description>Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</description><subject>Agriculture</subject><subject>Amplified fragment length polymorphism</subject><subject>Antioxidants</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Chloroplasts</subject><subject>Genetic analysis</subject><subject>Genetic markers</subject><subject>Genetic variability</subject><subject>Haplotypes</subject><subject>Indigenous species</subject><subject>Life Sciences</subject><subject>Microsatellites</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plant Systematics/Taxonomy/Biogeography</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Primers</subject><subject>Research Article</subject><subject>Sustainable production</subject><issn>0925-9864</issn><issn>1573-5109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAGyWWGAIXP_HY4UoIFWCAWbLSRxwSePWTpHYeBB4OZ4EV2Vggeku3_muzkHomMA5AVAXiYCitACiCuC6LGAHjYhQrBAE9C4agaai0KXk--ggpTkAaCXLEQrXrneDr_Grjd5WvvPDGw4tnkSfhjC4zltcP_vO9cknfPr1_rGwq7X_ev88w5VNrsGhx5Pp7B7bvslkF2JYdjYNeOHrGJLNiux0eGHji4vpEO21tkvu6OeO0eP06uHyppjdXd9eTmZFzTgfCq3Lpqa8tFpIxgiXWttKMWlLSmglLdeqrLiGpqECZE0a19q6lUCZliBYzcboZOtdxrBauzSYeVjHPr80lIrcXUnB_6OIFpoqxqTOFNlSm0IputYso8993gwBs1nfbNc3eX2zWd9AztBtJmW2f3Lxl_nP0DfxEoh-</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Salgado, Paola</creator><creator>Prinz, Kathleen</creator><creator>Finkeldey, Reiner</creator><creator>Ramírez, Claudio C.</creator><creator>Vogel, Hermine</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0072-4239</orcidid></search><sort><creationdate>20171201</creationdate><title>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</title><author>Salgado, Paola ; Prinz, Kathleen ; Finkeldey, Reiner ; Ramírez, Claudio C. ; Vogel, Hermine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-998dc248a9563314699ab736a8212b6a4978b490dd2506c1defacf602396053c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Amplified fragment length polymorphism</topic><topic>Antioxidants</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Chloroplasts</topic><topic>Genetic analysis</topic><topic>Genetic markers</topic><topic>Genetic variability</topic><topic>Haplotypes</topic><topic>Indigenous species</topic><topic>Life Sciences</topic><topic>Microsatellites</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plant Systematics/Taxonomy/Biogeography</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Primers</topic><topic>Research Article</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salgado, Paola</creatorcontrib><creatorcontrib>Prinz, Kathleen</creatorcontrib><creatorcontrib>Finkeldey, Reiner</creatorcontrib><creatorcontrib>Ramírez, Claudio C.</creatorcontrib><creatorcontrib>Vogel, Hermine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Genetic resources and crop evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado, Paola</au><au>Prinz, Kathleen</au><au>Finkeldey, Reiner</au><au>Ramírez, Claudio C.</au><au>Vogel, Hermine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers</atitle><jtitle>Genetic resources and crop evolution</jtitle><stitle>Genet Resour Crop Evol</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>2083</spage><epage>2091</epage><pages>2083-2091</pages><issn>0925-9864</issn><eissn>1573-5109</eissn><abstract>Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) also known as “maqui” is a dioecious tree species native to Chile and neighbouring zones of Argentina. Its fruit is collected from the wild by locals for consumption, and recently, as a raw material for industrial processing because of its high antioxidant capacity. As a consequence of its increasing demand, sustainable production is required. To study intraspecific diversity patterns we therefore analysed 58 accessions, growing in the Experimental Station of Universidad de Talca and originating from eight wild populations, using AFLPs and chloroplast microsatellites. Only 5% of the variability could be attributed to the provenance, whereas 95% was found between individuals of the same population. A significant correlation between genetic differentiation and geographic distances was detected (r = 0.51). Bayesian analysis revealed four main genetic groups, which are not correlated to the provenances. Two chloroplast microsatellite primers revealed two haplotypes of which one was detected in individuals from all the populations, whereas the other was only present in the two northernmost populations. The genetic variability found for this species provides an excellent basis for further selection and breeding.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10722-017-0498-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0072-4239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-9864
ispartof Genetic resources and crop evolution, 2017-12, Vol.64 (8), p.2083-2091
issn 0925-9864
1573-5109
language eng
recordid cdi_proquest_journals_2259767654
source Springer Nature - Complete Springer Journals
subjects Agriculture
Amplified fragment length polymorphism
Antioxidants
Bayesian analysis
Biomedical and Life Sciences
Breeding
Chloroplasts
Genetic analysis
Genetic markers
Genetic variability
Haplotypes
Indigenous species
Life Sciences
Microsatellites
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Plant species
Plant Systematics/Taxonomy/Biogeography
Population genetics
Populations
Primers
Research Article
Sustainable production
title Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variability%20of%20Aristotelia%20chilensis%20(%E2%80%9Cmaqui%E2%80%9D)%20based%20on%20AFLP%20and%20chloroplast%20microsatellite%20markers&rft.jtitle=Genetic%20resources%20and%20crop%20evolution&rft.au=Salgado,%20Paola&rft.date=2017-12-01&rft.volume=64&rft.issue=8&rft.spage=2083&rft.epage=2091&rft.pages=2083-2091&rft.issn=0925-9864&rft.eissn=1573-5109&rft_id=info:doi/10.1007/s10722-017-0498-0&rft_dat=%3Cproquest_cross%3E1959273369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259767654&rft_id=info:pmid/&rfr_iscdi=true