Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2
The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculatio...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2013-05, Vol.48 (10), p.3638-3651 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3651 |
---|---|
container_issue | 10 |
container_start_page | 3638 |
container_title | Journal of materials science |
container_volume | 48 |
creator | Marioara, Calin D. Lefebvre, Williams Andersen, Sigmund J. Friis, Jesper |
description | The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the
η
-MgZn
2
Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to
η
. For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation. |
doi_str_mv | 10.1007/s10853-013-7158-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259744519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259744519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</originalsourceid><addsrcrecordid>eNp1kb1OwzAUhS0EEqXwAGyWmA3-SeKELSotRWrFQFm6WK7jFFepU2xn6MY7MPEkvAUPwZPgKkhMLPfe4Zzv6ugAcEnwNcGY33iC85QhTBjiJM0ROwIDknKGkhyzYzDAmFJEk4ycgjPvNxjjlFMyAB9laLdGQR9cp0LnNGxr-CJdpa2xa7hzWpmdCTJoD42F0sKy-X57n6_jWNo4Rh2UTdPuYaWDdltjdQVXezgty7sJelqM59FTwdo4H9DOGRtxTWQp2aiukcG01t9Cp_sThhZ-faL5emnpOTipZeP1xe8egufJeDGaotnj_cOonCHFSBZQViRMsSqjBa50kpJC0yTnSspqlSSSFFnBVzJqpKqKWmpMuVzplGd5LVVB65oNwVXP3bn2tdM-iE3bORtfCkrTgicHaFSRXqVc673TtYhhttLtBcHi0IDoGxCxAXFoQLDoob3HH4Kvtfsj_2_6AQS6jhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259744519</pqid></control><display><type>article</type><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><source>SpringerLink Journals</source><creator>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</creator><creatorcontrib>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</creatorcontrib><description>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the
η
-MgZn
2
Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to
η
. For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7158-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Atomic structure ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; Copper base alloys ; Crystallography and Scattering Methods ; Enthalpy ; First principles ; Image transmission ; Laves phase ; Magnesium ; Materials Science ; Planes ; Plates (structural members) ; Polymer Sciences ; Precipitates ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Solid Mechanics ; Transmission electron microscopy ; Zinc</subject><ispartof>Journal of materials science, 2013-05, Vol.48 (10), p.3638-3651</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</citedby><cites>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7158-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7158-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Marioara, Calin D.</creatorcontrib><creatorcontrib>Lefebvre, Williams</creatorcontrib><creatorcontrib>Andersen, Sigmund J.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the
η
-MgZn
2
Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to
η
. For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</description><subject>Atomic structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystallography and Scattering Methods</subject><subject>Enthalpy</subject><subject>First principles</subject><subject>Image transmission</subject><subject>Laves phase</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Planes</subject><subject>Plates (structural members)</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Solid Mechanics</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kb1OwzAUhS0EEqXwAGyWmA3-SeKELSotRWrFQFm6WK7jFFepU2xn6MY7MPEkvAUPwZPgKkhMLPfe4Zzv6ugAcEnwNcGY33iC85QhTBjiJM0ROwIDknKGkhyzYzDAmFJEk4ycgjPvNxjjlFMyAB9laLdGQR9cp0LnNGxr-CJdpa2xa7hzWpmdCTJoD42F0sKy-X57n6_jWNo4Rh2UTdPuYaWDdltjdQVXezgty7sJelqM59FTwdo4H9DOGRtxTWQp2aiukcG01t9Cp_sThhZ-faL5emnpOTipZeP1xe8egufJeDGaotnj_cOonCHFSBZQViRMsSqjBa50kpJC0yTnSspqlSSSFFnBVzJqpKqKWmpMuVzplGd5LVVB65oNwVXP3bn2tdM-iE3bORtfCkrTgicHaFSRXqVc673TtYhhttLtBcHi0IDoGxCxAXFoQLDoob3HH4Kvtfsj_2_6AQS6jhI</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Marioara, Calin D.</creator><creator>Lefebvre, Williams</creator><creator>Andersen, Sigmund J.</creator><creator>Friis, Jesper</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130501</creationdate><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><author>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystallography and Scattering Methods</topic><topic>Enthalpy</topic><topic>First principles</topic><topic>Image transmission</topic><topic>Laves phase</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Planes</topic><topic>Plates (structural members)</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Solid Mechanics</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marioara, Calin D.</creatorcontrib><creatorcontrib>Lefebvre, Williams</creatorcontrib><creatorcontrib>Andersen, Sigmund J.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marioara, Calin D.</au><au>Lefebvre, Williams</au><au>Andersen, Sigmund J.</au><au>Friis, Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>48</volume><issue>10</issue><spage>3638</spage><epage>3651</epage><pages>3638-3651</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the
η
-MgZn
2
Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to
η
. For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7158-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2013-05, Vol.48 (10), p.3638-3651 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259744519 |
source | SpringerLink Journals |
subjects | Atomic structure Characterization and Evaluation of Materials Chemical precipitation Chemistry and Materials Science Classical Mechanics Copper Copper base alloys Crystallography and Scattering Methods Enthalpy First principles Image transmission Laves phase Magnesium Materials Science Planes Plates (structural members) Polymer Sciences Precipitates Scanning electron microscopy Scanning transmission electron microscopy Solid Mechanics Transmission electron microscopy Zinc |
title | Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20structure%20of%20hardening%20precipitates%20in%20an%20Al%E2%80%93Mg%E2%80%93Zn%E2%80%93Cu%20alloy%20determined%20by%20HAADF-STEM%20and%20first-principles%20calculations:%20relation%20to%20%CE%B7-MgZn2&rft.jtitle=Journal%20of%20materials%20science&rft.au=Marioara,%20Calin%20D.&rft.date=2013-05-01&rft.volume=48&rft.issue=10&rft.spage=3638&rft.epage=3651&rft.pages=3638-3651&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7158-3&rft_dat=%3Cproquest_cross%3E2259744519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259744519&rft_id=info:pmid/&rfr_iscdi=true |