Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2

The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2013-05, Vol.48 (10), p.3638-3651
Hauptverfasser: Marioara, Calin D., Lefebvre, Williams, Andersen, Sigmund J., Friis, Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3651
container_issue 10
container_start_page 3638
container_title Journal of materials science
container_volume 48
creator Marioara, Calin D.
Lefebvre, Williams
Andersen, Sigmund J.
Friis, Jesper
description The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the η -MgZn 2 Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to η . For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.
doi_str_mv 10.1007/s10853-013-7158-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259744519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259744519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</originalsourceid><addsrcrecordid>eNp1kb1OwzAUhS0EEqXwAGyWmA3-SeKELSotRWrFQFm6WK7jFFepU2xn6MY7MPEkvAUPwZPgKkhMLPfe4Zzv6ugAcEnwNcGY33iC85QhTBjiJM0ROwIDknKGkhyzYzDAmFJEk4ycgjPvNxjjlFMyAB9laLdGQR9cp0LnNGxr-CJdpa2xa7hzWpmdCTJoD42F0sKy-X57n6_jWNo4Rh2UTdPuYaWDdltjdQVXezgty7sJelqM59FTwdo4H9DOGRtxTWQp2aiukcG01t9Cp_sThhZ-faL5emnpOTipZeP1xe8egufJeDGaotnj_cOonCHFSBZQViRMsSqjBa50kpJC0yTnSspqlSSSFFnBVzJqpKqKWmpMuVzplGd5LVVB65oNwVXP3bn2tdM-iE3bORtfCkrTgicHaFSRXqVc673TtYhhttLtBcHi0IDoGxCxAXFoQLDoob3HH4Kvtfsj_2_6AQS6jhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259744519</pqid></control><display><type>article</type><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><source>SpringerLink Journals</source><creator>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</creator><creatorcontrib>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</creatorcontrib><description>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the η -MgZn 2 Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to η . For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7158-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Atomic structure ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Copper ; Copper base alloys ; Crystallography and Scattering Methods ; Enthalpy ; First principles ; Image transmission ; Laves phase ; Magnesium ; Materials Science ; Planes ; Plates (structural members) ; Polymer Sciences ; Precipitates ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Solid Mechanics ; Transmission electron microscopy ; Zinc</subject><ispartof>Journal of materials science, 2013-05, Vol.48 (10), p.3638-3651</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</citedby><cites>FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7158-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7158-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Marioara, Calin D.</creatorcontrib><creatorcontrib>Lefebvre, Williams</creatorcontrib><creatorcontrib>Andersen, Sigmund J.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the η -MgZn 2 Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to η . For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</description><subject>Atomic structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystallography and Scattering Methods</subject><subject>Enthalpy</subject><subject>First principles</subject><subject>Image transmission</subject><subject>Laves phase</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Planes</subject><subject>Plates (structural members)</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Solid Mechanics</subject><subject>Transmission electron microscopy</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kb1OwzAUhS0EEqXwAGyWmA3-SeKELSotRWrFQFm6WK7jFFepU2xn6MY7MPEkvAUPwZPgKkhMLPfe4Zzv6ugAcEnwNcGY33iC85QhTBjiJM0ROwIDknKGkhyzYzDAmFJEk4ycgjPvNxjjlFMyAB9laLdGQR9cp0LnNGxr-CJdpa2xa7hzWpmdCTJoD42F0sKy-X57n6_jWNo4Rh2UTdPuYaWDdltjdQVXezgty7sJelqM59FTwdo4H9DOGRtxTWQp2aiukcG01t9Cp_sThhZ-faL5emnpOTipZeP1xe8egufJeDGaotnj_cOonCHFSBZQViRMsSqjBa50kpJC0yTnSspqlSSSFFnBVzJqpKqKWmpMuVzplGd5LVVB65oNwVXP3bn2tdM-iE3bORtfCkrTgicHaFSRXqVc673TtYhhttLtBcHi0IDoGxCxAXFoQLDoob3HH4Kvtfsj_2_6AQS6jhI</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Marioara, Calin D.</creator><creator>Lefebvre, Williams</creator><creator>Andersen, Sigmund J.</creator><creator>Friis, Jesper</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130501</creationdate><title>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</title><author>Marioara, Calin D. ; Lefebvre, Williams ; Andersen, Sigmund J. ; Friis, Jesper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6943c3d6290de4519e2487caadb44a19697ba943acd9fae027abe5768fac92ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystallography and Scattering Methods</topic><topic>Enthalpy</topic><topic>First principles</topic><topic>Image transmission</topic><topic>Laves phase</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Planes</topic><topic>Plates (structural members)</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Solid Mechanics</topic><topic>Transmission electron microscopy</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marioara, Calin D.</creatorcontrib><creatorcontrib>Lefebvre, Williams</creatorcontrib><creatorcontrib>Andersen, Sigmund J.</creatorcontrib><creatorcontrib>Friis, Jesper</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marioara, Calin D.</au><au>Lefebvre, Williams</au><au>Andersen, Sigmund J.</au><au>Friis, Jesper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>48</volume><issue>10</issue><spage>3638</spage><epage>3651</epage><pages>3638-3651</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the η -MgZn 2 Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to η . For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7158-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2013-05, Vol.48 (10), p.3638-3651
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259744519
source SpringerLink Journals
subjects Atomic structure
Characterization and Evaluation of Materials
Chemical precipitation
Chemistry and Materials Science
Classical Mechanics
Copper
Copper base alloys
Crystallography and Scattering Methods
Enthalpy
First principles
Image transmission
Laves phase
Magnesium
Materials Science
Planes
Plates (structural members)
Polymer Sciences
Precipitates
Scanning electron microscopy
Scanning transmission electron microscopy
Solid Mechanics
Transmission electron microscopy
Zinc
title Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: relation to η-MgZn2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20structure%20of%20hardening%20precipitates%20in%20an%20Al%E2%80%93Mg%E2%80%93Zn%E2%80%93Cu%20alloy%20determined%20by%20HAADF-STEM%20and%20first-principles%20calculations:%20relation%20to%20%CE%B7-MgZn2&rft.jtitle=Journal%20of%20materials%20science&rft.au=Marioara,%20Calin%20D.&rft.date=2013-05-01&rft.volume=48&rft.issue=10&rft.spage=3638&rft.epage=3651&rft.pages=3638-3651&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7158-3&rft_dat=%3Cproquest_cross%3E2259744519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259744519&rft_id=info:pmid/&rfr_iscdi=true