Development of new titanium implants with longitudinal gradient porosity by space-holder technique

Bone replacement with conventional biomaterials entails a biomechanical incompatibility with respect to highly specialized and anisotropic bone tissue; stiffness mismatch is the most important example of that event, and it is always present in the components of all prosthetic systems for dental and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2015-09, Vol.50 (18), p.6103-6112
Hauptverfasser: Pavón, J. J, Trueba, P, Rodríguez-Ortiz, J. A, Torres, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6112
container_issue 18
container_start_page 6103
container_title Journal of materials science
container_volume 50
creator Pavón, J. J
Trueba, P
Rodríguez-Ortiz, J. A
Torres, Y
description Bone replacement with conventional biomaterials entails a biomechanical incompatibility with respect to highly specialized and anisotropic bone tissue; stiffness mismatch is the most important example of that event, and it is always present in the components of all prosthetic systems for dental and joint replacements. In the case of titanium implants used for those biomedical applications, the main consequence of that mismatch is the bone resorption around the implants due to stress shielding with respect to bone. Bio-inspired design frameworks have opened a broad field of possibilities for new approaches to the stress-shielding phenomenon in bone replacements systems. To that end, conventional and non-conventional powder metallurgy have emerged as the feasible processing techniques for producing porous samples, which can match both complexity and anisotropy of bone tissue. Complete dental restoration is a good example of biomechanical systems with an important change of longitudinal stiffness once the components are implanted; therefore, development of new prosthetics systems with graded porosity for continuous Young’s modulus change is required. Samples with longitudinal graded porosity (symmetric and non-symmetric) by space-holder technique were developed, fabricated, and characterized in this work. Main findings indicated that the experimental procedure for space-holder elimination was effective, feasible, and reproducible, with better results for a compaction pressure of 800 MPa with low global NaCl content. Three-layer design (30/40/50) allowed stress shielding to be reduced without any important effect on mechanical strength with respect to the cortical bone.
doi_str_mv 10.1007/s10853-015-9163-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259740547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A449629964</galeid><sourcerecordid>A449629964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-d94918c22142e37432905cf980a8d394be2c79d8a1269baefe7108bc825c9333</originalsourceid><addsrcrecordid>eNp9kd9r1TAUx4MoeJ3-AT4Z8MmHzvxsm8cxdRsMBDefQ5qe9ma0SU3Szfvfm0uFcUEkDwfC55Occ74IvafknBLSfE6UtJJXhMpK0ZpX9AXaUdnwSrSEv0Q7QhirmKjpa_QmpQdCiGwY3aHuCzzCFJYZfMZhwB6ecHbZeLfO2M3LZHxO-MnlPZ6CH11ee-fNhMdoend0lhBDcvmAuwNOi7FQ7cPUQ8QZ7N67Xyu8Ra8GMyV497eeoftvX-8vr6vb71c3lxe3lZWU5qpXQtHWMkYFA94IzhSRdlAtMW3PleiA2Ub1raGsVp2BAZoyc2dbJq3inJ-hj9uzSwzl15T1Q1hj6TVpxqRqBJGieaZGM4F2fgg5Gju7ZPWFEKpmStWiUOf_oMrpYXY2eBhcuT8RPp0IhcnwO49mTUnf3P04ZenG2rK5FGHQS3SziQdNiT6GqbcwdQlTH8PUtDhsc1Jh_Qjxebj_SR82aTBBmzG6pH_eMULrkj4nbWnlD2OGqVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259740547</pqid></control><display><type>article</type><title>Development of new titanium implants with longitudinal gradient porosity by space-holder technique</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pavón, J. J ; Trueba, P ; Rodríguez-Ortiz, J. A ; Torres, Y</creator><creatorcontrib>Pavón, J. J ; Trueba, P ; Rodríguez-Ortiz, J. A ; Torres, Y</creatorcontrib><description>Bone replacement with conventional biomaterials entails a biomechanical incompatibility with respect to highly specialized and anisotropic bone tissue; stiffness mismatch is the most important example of that event, and it is always present in the components of all prosthetic systems for dental and joint replacements. In the case of titanium implants used for those biomedical applications, the main consequence of that mismatch is the bone resorption around the implants due to stress shielding with respect to bone. Bio-inspired design frameworks have opened a broad field of possibilities for new approaches to the stress-shielding phenomenon in bone replacements systems. To that end, conventional and non-conventional powder metallurgy have emerged as the feasible processing techniques for producing porous samples, which can match both complexity and anisotropy of bone tissue. Complete dental restoration is a good example of biomechanical systems with an important change of longitudinal stiffness once the components are implanted; therefore, development of new prosthetics systems with graded porosity for continuous Young’s modulus change is required. Samples with longitudinal graded porosity (symmetric and non-symmetric) by space-holder technique were developed, fabricated, and characterized in this work. Main findings indicated that the experimental procedure for space-holder elimination was effective, feasible, and reproducible, with better results for a compaction pressure of 800 MPa with low global NaCl content. Three-layer design (30/40/50) allowed stress shielding to be reduced without any important effect on mechanical strength with respect to the cortical bone.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9163-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anisotropy ; Biocompatibility ; biocompatible materials ; Biological products ; Biomechanics ; Biomedical materials ; Biomimetics ; bone resorption ; Bones ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Incompatibility ; Materials Science ; Metal powders ; metallurgy ; Methods ; Modulus of elasticity ; Original Paper ; Polymer Sciences ; Porosity ; Powder metallurgy ; Powdered metal products ; Prostheses ; Prostheses and implants ; sodium chloride ; Solid Mechanics ; Stiffness ; Stress shielding ; Surgical implants ; Systems (metallurgical) ; Titanium</subject><ispartof>Journal of materials science, 2015-09, Vol.50 (18), p.6103-6112</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-d94918c22142e37432905cf980a8d394be2c79d8a1269baefe7108bc825c9333</citedby><cites>FETCH-LOGICAL-c511t-d94918c22142e37432905cf980a8d394be2c79d8a1269baefe7108bc825c9333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9163-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9163-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pavón, J. J</creatorcontrib><creatorcontrib>Trueba, P</creatorcontrib><creatorcontrib>Rodríguez-Ortiz, J. A</creatorcontrib><creatorcontrib>Torres, Y</creatorcontrib><title>Development of new titanium implants with longitudinal gradient porosity by space-holder technique</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Bone replacement with conventional biomaterials entails a biomechanical incompatibility with respect to highly specialized and anisotropic bone tissue; stiffness mismatch is the most important example of that event, and it is always present in the components of all prosthetic systems for dental and joint replacements. In the case of titanium implants used for those biomedical applications, the main consequence of that mismatch is the bone resorption around the implants due to stress shielding with respect to bone. Bio-inspired design frameworks have opened a broad field of possibilities for new approaches to the stress-shielding phenomenon in bone replacements systems. To that end, conventional and non-conventional powder metallurgy have emerged as the feasible processing techniques for producing porous samples, which can match both complexity and anisotropy of bone tissue. Complete dental restoration is a good example of biomechanical systems with an important change of longitudinal stiffness once the components are implanted; therefore, development of new prosthetics systems with graded porosity for continuous Young’s modulus change is required. Samples with longitudinal graded porosity (symmetric and non-symmetric) by space-holder technique were developed, fabricated, and characterized in this work. Main findings indicated that the experimental procedure for space-holder elimination was effective, feasible, and reproducible, with better results for a compaction pressure of 800 MPa with low global NaCl content. Three-layer design (30/40/50) allowed stress shielding to be reduced without any important effect on mechanical strength with respect to the cortical bone.</description><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>biocompatible materials</subject><subject>Biological products</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>bone resorption</subject><subject>Bones</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Incompatibility</subject><subject>Materials Science</subject><subject>Metal powders</subject><subject>metallurgy</subject><subject>Methods</subject><subject>Modulus of elasticity</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Powder metallurgy</subject><subject>Powdered metal products</subject><subject>Prostheses</subject><subject>Prostheses and implants</subject><subject>sodium chloride</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><subject>Stress shielding</subject><subject>Surgical implants</subject><subject>Systems (metallurgical)</subject><subject>Titanium</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kd9r1TAUx4MoeJ3-AT4Z8MmHzvxsm8cxdRsMBDefQ5qe9ma0SU3Szfvfm0uFcUEkDwfC55Occ74IvafknBLSfE6UtJJXhMpK0ZpX9AXaUdnwSrSEv0Q7QhirmKjpa_QmpQdCiGwY3aHuCzzCFJYZfMZhwB6ecHbZeLfO2M3LZHxO-MnlPZ6CH11ee-fNhMdoend0lhBDcvmAuwNOi7FQ7cPUQ8QZ7N67Xyu8Ra8GMyV497eeoftvX-8vr6vb71c3lxe3lZWU5qpXQtHWMkYFA94IzhSRdlAtMW3PleiA2Ub1raGsVp2BAZoyc2dbJq3inJ-hj9uzSwzl15T1Q1hj6TVpxqRqBJGieaZGM4F2fgg5Gju7ZPWFEKpmStWiUOf_oMrpYXY2eBhcuT8RPp0IhcnwO49mTUnf3P04ZenG2rK5FGHQS3SziQdNiT6GqbcwdQlTH8PUtDhsc1Jh_Qjxebj_SR82aTBBmzG6pH_eMULrkj4nbWnlD2OGqVk</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Pavón, J. J</creator><creator>Trueba, P</creator><creator>Rodríguez-Ortiz, J. A</creator><creator>Torres, Y</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Development of new titanium implants with longitudinal gradient porosity by space-holder technique</title><author>Pavón, J. J ; Trueba, P ; Rodríguez-Ortiz, J. A ; Torres, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-d94918c22142e37432905cf980a8d394be2c79d8a1269baefe7108bc825c9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>biocompatible materials</topic><topic>Biological products</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>bone resorption</topic><topic>Bones</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Incompatibility</topic><topic>Materials Science</topic><topic>Metal powders</topic><topic>metallurgy</topic><topic>Methods</topic><topic>Modulus of elasticity</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Powder metallurgy</topic><topic>Powdered metal products</topic><topic>Prostheses</topic><topic>Prostheses and implants</topic><topic>sodium chloride</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><topic>Stress shielding</topic><topic>Surgical implants</topic><topic>Systems (metallurgical)</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavón, J. J</creatorcontrib><creatorcontrib>Trueba, P</creatorcontrib><creatorcontrib>Rodríguez-Ortiz, J. A</creatorcontrib><creatorcontrib>Torres, Y</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavón, J. J</au><au>Trueba, P</au><au>Rodríguez-Ortiz, J. A</au><au>Torres, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of new titanium implants with longitudinal gradient porosity by space-holder technique</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>50</volume><issue>18</issue><spage>6103</spage><epage>6112</epage><pages>6103-6112</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Bone replacement with conventional biomaterials entails a biomechanical incompatibility with respect to highly specialized and anisotropic bone tissue; stiffness mismatch is the most important example of that event, and it is always present in the components of all prosthetic systems for dental and joint replacements. In the case of titanium implants used for those biomedical applications, the main consequence of that mismatch is the bone resorption around the implants due to stress shielding with respect to bone. Bio-inspired design frameworks have opened a broad field of possibilities for new approaches to the stress-shielding phenomenon in bone replacements systems. To that end, conventional and non-conventional powder metallurgy have emerged as the feasible processing techniques for producing porous samples, which can match both complexity and anisotropy of bone tissue. Complete dental restoration is a good example of biomechanical systems with an important change of longitudinal stiffness once the components are implanted; therefore, development of new prosthetics systems with graded porosity for continuous Young’s modulus change is required. Samples with longitudinal graded porosity (symmetric and non-symmetric) by space-holder technique were developed, fabricated, and characterized in this work. Main findings indicated that the experimental procedure for space-holder elimination was effective, feasible, and reproducible, with better results for a compaction pressure of 800 MPa with low global NaCl content. Three-layer design (30/40/50) allowed stress shielding to be reduced without any important effect on mechanical strength with respect to the cortical bone.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9163-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2015-09, Vol.50 (18), p.6103-6112
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259740547
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Biocompatibility
biocompatible materials
Biological products
Biomechanics
Biomedical materials
Biomimetics
bone resorption
Bones
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Incompatibility
Materials Science
Metal powders
metallurgy
Methods
Modulus of elasticity
Original Paper
Polymer Sciences
Porosity
Powder metallurgy
Powdered metal products
Prostheses
Prostheses and implants
sodium chloride
Solid Mechanics
Stiffness
Stress shielding
Surgical implants
Systems (metallurgical)
Titanium
title Development of new titanium implants with longitudinal gradient porosity by space-holder technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A19%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20new%20titanium%20implants%20with%20longitudinal%20gradient%20porosity%20by%20space-holder%20technique&rft.jtitle=Journal%20of%20materials%20science&rft.au=Pav%C3%B3n,%20J.%20J&rft.date=2015-09-01&rft.volume=50&rft.issue=18&rft.spage=6103&rft.epage=6112&rft.pages=6103-6112&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9163-1&rft_dat=%3Cgale_proqu%3EA449629964%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259740547&rft_id=info:pmid/&rft_galeid=A449629964&rfr_iscdi=true