A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes
A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2011-05, Vol.46 (9), p.3127-3135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3135 |
---|---|
container_issue | 9 |
container_start_page | 3127 |
container_title | Journal of materials science |
container_volume | 46 |
creator | Li, Zhonghong Yang, Zupei Qiu, Nongxue Yang, Gongming |
description | A homogeneous α-Al
2
O
3
crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al
2
O
3
membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al
2
O
3
membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al
2
O
3
completely transformed into α-Al
2
O
3
and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al
2
O
3
intermediate layer to initially modify its surface. A single α-Al
2
O
3
crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO
2
, SiO
2
, and TiO
2
–SiO
2
hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al
2
O
3
crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes. |
doi_str_mv | 10.1007/s10853-010-5193-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259733762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259733762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaW2GLwI46TZVXxkip1QVlbbjwpqfLCTlG74wDsOAkX4RCcBKdBYsXG9tjfPyN_CJ0zesUoVdee0UQKQhklkqWCbA_QiEklSJRQcYhGlHJOeBSzY3Ti_ZpSKhVnI_Q-wb4pv98-VlASC654BYu_Psmk5HOBM7fznSlxUXfgSrMDh6vGFnkRIMHiGW4b12w8DlBRl-D7E0CJuwb7TRseO7wo5vwSP-5XU9t9Hcb1F_h5t3SFxRVUS2dq8KfoKDelh7PffYyebm8W03sym989TCczkvFEdEQuJU-sSOMsibiJVBrJFLiVmbKJVRA8JGYZmTzKIsWkCV-NGcRS9g6oCVLG6GLo27rmZQO-0-tm4-owUnMuUyWEinmg2EBlrvHeQa5bV1TG7TSjupeuB-k6SNe9dL0NGT5kfGDrFbi_zv-HfgBsPIXa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259733762</pqid></control><display><type>article</type><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><source>SpringerLink Journals</source><creator>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</creator><creatorcontrib>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</creatorcontrib><description>A homogeneous α-Al
2
O
3
crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al
2
O
3
membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al
2
O
3
membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al
2
O
3
completely transformed into α-Al
2
O
3
and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al
2
O
3
intermediate layer to initially modify its surface. A single α-Al
2
O
3
crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO
2
, SiO
2
, and TiO
2
–SiO
2
hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al
2
O
3
crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-5193-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum oxide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal defects ; Crystallography and Scattering Methods ; Grains ; Interlayers ; Materials Science ; Membranes ; Microfiltration ; Polyethylene glycol ; Polymer Sciences ; Polyvinyl alcohol ; Pore size ; Porosity ; Silicon dioxide ; Sintering (powder metallurgy) ; Sol-gel processes ; Solid Mechanics ; Stainless steel ; Stainless steels ; Substrates ; Thickness ; Titanium dioxide ; Transitional aluminas</subject><ispartof>Journal of materials science, 2011-05, Vol.46 (9), p.3127-3135</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Journal of Materials Science is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</citedby><cites>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-5193-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-5193-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Zhonghong</creatorcontrib><creatorcontrib>Yang, Zupei</creatorcontrib><creatorcontrib>Qiu, Nongxue</creatorcontrib><creatorcontrib>Yang, Gongming</creatorcontrib><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A homogeneous α-Al
2
O
3
crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al
2
O
3
membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al
2
O
3
membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al
2
O
3
completely transformed into α-Al
2
O
3
and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al
2
O
3
intermediate layer to initially modify its surface. A single α-Al
2
O
3
crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO
2
, SiO
2
, and TiO
2
–SiO
2
hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al
2
O
3
crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</description><subject>Aluminum oxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal defects</subject><subject>Crystallography and Scattering Methods</subject><subject>Grains</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Polyethylene glycol</subject><subject>Polymer Sciences</subject><subject>Polyvinyl alcohol</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Silicon dioxide</subject><subject>Sintering (powder metallurgy)</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transitional aluminas</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtOwzAQhi0EEqVwAHaW2GLwI46TZVXxkip1QVlbbjwpqfLCTlG74wDsOAkX4RCcBKdBYsXG9tjfPyN_CJ0zesUoVdee0UQKQhklkqWCbA_QiEklSJRQcYhGlHJOeBSzY3Ti_ZpSKhVnI_Q-wb4pv98-VlASC654BYu_Psmk5HOBM7fznSlxUXfgSrMDh6vGFnkRIMHiGW4b12w8DlBRl-D7E0CJuwb7TRseO7wo5vwSP-5XU9t9Hcb1F_h5t3SFxRVUS2dq8KfoKDelh7PffYyebm8W03sym989TCczkvFEdEQuJU-sSOMsibiJVBrJFLiVmbKJVRA8JGYZmTzKIsWkCV-NGcRS9g6oCVLG6GLo27rmZQO-0-tm4-owUnMuUyWEinmg2EBlrvHeQa5bV1TG7TSjupeuB-k6SNe9dL0NGT5kfGDrFbi_zv-HfgBsPIXa</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Li, Zhonghong</creator><creator>Yang, Zupei</creator><creator>Qiu, Nongxue</creator><creator>Yang, Gongming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110501</creationdate><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><author>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum oxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal defects</topic><topic>Crystallography and Scattering Methods</topic><topic>Grains</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Polyethylene glycol</topic><topic>Polymer Sciences</topic><topic>Polyvinyl alcohol</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Silicon dioxide</topic><topic>Sintering (powder metallurgy)</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transitional aluminas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhonghong</creatorcontrib><creatorcontrib>Yang, Zupei</creatorcontrib><creatorcontrib>Qiu, Nongxue</creatorcontrib><creatorcontrib>Yang, Gongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhonghong</au><au>Yang, Zupei</au><au>Qiu, Nongxue</au><au>Yang, Gongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>46</volume><issue>9</issue><spage>3127</spage><epage>3135</epage><pages>3127-3135</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A homogeneous α-Al
2
O
3
crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al
2
O
3
membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al
2
O
3
membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al
2
O
3
completely transformed into α-Al
2
O
3
and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al
2
O
3
intermediate layer to initially modify its surface. A single α-Al
2
O
3
crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO
2
, SiO
2
, and TiO
2
–SiO
2
hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al
2
O
3
crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-5193-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2011-05, Vol.46 (9), p.3127-3135 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259733762 |
source | SpringerLink Journals |
subjects | Aluminum oxide Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystal defects Crystallography and Scattering Methods Grains Interlayers Materials Science Membranes Microfiltration Polyethylene glycol Polymer Sciences Polyvinyl alcohol Pore size Porosity Silicon dioxide Sintering (powder metallurgy) Sol-gel processes Solid Mechanics Stainless steel Stainless steels Substrates Thickness Titanium dioxide Transitional aluminas |
title | A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sol%E2%80%93gel-derived%20%CE%B1-Al2O3%20crystal%20interlayer%20modified%20316L%20porous%20stainless%20steel%20to%20support%20TiO2,%20SiO2,%20and%20TiO2%E2%80%93SiO2%20hybrid%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Zhonghong&rft.date=2011-05-01&rft.volume=46&rft.issue=9&rft.spage=3127&rft.epage=3135&rft.pages=3127-3135&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-5193-x&rft_dat=%3Cproquest_cross%3E2259733762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259733762&rft_id=info:pmid/&rfr_iscdi=true |