A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes

A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2011-05, Vol.46 (9), p.3127-3135
Hauptverfasser: Li, Zhonghong, Yang, Zupei, Qiu, Nongxue, Yang, Gongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3135
container_issue 9
container_start_page 3127
container_title Journal of materials science
container_volume 46
creator Li, Zhonghong
Yang, Zupei
Qiu, Nongxue
Yang, Gongming
description A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al 2 O 3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al 2 O 3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al 2 O 3 completely transformed into α-Al 2 O 3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al 2 O 3 intermediate layer to initially modify its surface. A single α-Al 2 O 3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO 2 , SiO 2 , and TiO 2 –SiO 2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al 2 O 3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.
doi_str_mv 10.1007/s10853-010-5193-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259733762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259733762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaW2GLwI46TZVXxkip1QVlbbjwpqfLCTlG74wDsOAkX4RCcBKdBYsXG9tjfPyN_CJ0zesUoVdee0UQKQhklkqWCbA_QiEklSJRQcYhGlHJOeBSzY3Ti_ZpSKhVnI_Q-wb4pv98-VlASC654BYu_Psmk5HOBM7fznSlxUXfgSrMDh6vGFnkRIMHiGW4b12w8DlBRl-D7E0CJuwb7TRseO7wo5vwSP-5XU9t9Hcb1F_h5t3SFxRVUS2dq8KfoKDelh7PffYyebm8W03sym989TCczkvFEdEQuJU-sSOMsibiJVBrJFLiVmbKJVRA8JGYZmTzKIsWkCV-NGcRS9g6oCVLG6GLo27rmZQO-0-tm4-owUnMuUyWEinmg2EBlrvHeQa5bV1TG7TSjupeuB-k6SNe9dL0NGT5kfGDrFbi_zv-HfgBsPIXa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259733762</pqid></control><display><type>article</type><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><source>SpringerLink Journals</source><creator>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</creator><creatorcontrib>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</creatorcontrib><description>A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al 2 O 3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al 2 O 3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al 2 O 3 completely transformed into α-Al 2 O 3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al 2 O 3 intermediate layer to initially modify its surface. A single α-Al 2 O 3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO 2 , SiO 2 , and TiO 2 –SiO 2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al 2 O 3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-5193-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aluminum oxide ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal defects ; Crystallography and Scattering Methods ; Grains ; Interlayers ; Materials Science ; Membranes ; Microfiltration ; Polyethylene glycol ; Polymer Sciences ; Polyvinyl alcohol ; Pore size ; Porosity ; Silicon dioxide ; Sintering (powder metallurgy) ; Sol-gel processes ; Solid Mechanics ; Stainless steel ; Stainless steels ; Substrates ; Thickness ; Titanium dioxide ; Transitional aluminas</subject><ispartof>Journal of materials science, 2011-05, Vol.46 (9), p.3127-3135</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Journal of Materials Science is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</citedby><cites>FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-5193-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-5193-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Li, Zhonghong</creatorcontrib><creatorcontrib>Yang, Zupei</creatorcontrib><creatorcontrib>Qiu, Nongxue</creatorcontrib><creatorcontrib>Yang, Gongming</creatorcontrib><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al 2 O 3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al 2 O 3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al 2 O 3 completely transformed into α-Al 2 O 3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al 2 O 3 intermediate layer to initially modify its surface. A single α-Al 2 O 3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO 2 , SiO 2 , and TiO 2 –SiO 2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al 2 O 3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</description><subject>Aluminum oxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal defects</subject><subject>Crystallography and Scattering Methods</subject><subject>Grains</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Polyethylene glycol</subject><subject>Polymer Sciences</subject><subject>Polyvinyl alcohol</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Silicon dioxide</subject><subject>Sintering (powder metallurgy)</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Transitional aluminas</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtOwzAQhi0EEqVwAHaW2GLwI46TZVXxkip1QVlbbjwpqfLCTlG74wDsOAkX4RCcBKdBYsXG9tjfPyN_CJ0zesUoVdee0UQKQhklkqWCbA_QiEklSJRQcYhGlHJOeBSzY3Ti_ZpSKhVnI_Q-wb4pv98-VlASC654BYu_Psmk5HOBM7fznSlxUXfgSrMDh6vGFnkRIMHiGW4b12w8DlBRl-D7E0CJuwb7TRseO7wo5vwSP-5XU9t9Hcb1F_h5t3SFxRVUS2dq8KfoKDelh7PffYyebm8W03sym989TCczkvFEdEQuJU-sSOMsibiJVBrJFLiVmbKJVRA8JGYZmTzKIsWkCV-NGcRS9g6oCVLG6GLo27rmZQO-0-tm4-owUnMuUyWEinmg2EBlrvHeQa5bV1TG7TSjupeuB-k6SNe9dL0NGT5kfGDrFbi_zv-HfgBsPIXa</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Li, Zhonghong</creator><creator>Yang, Zupei</creator><creator>Qiu, Nongxue</creator><creator>Yang, Gongming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110501</creationdate><title>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</title><author>Li, Zhonghong ; Yang, Zupei ; Qiu, Nongxue ; Yang, Gongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-5b528d396c842a479459e2d5c7d8d7e8538ab4af4c4715a00561e65500220a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum oxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal defects</topic><topic>Crystallography and Scattering Methods</topic><topic>Grains</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Polyethylene glycol</topic><topic>Polymer Sciences</topic><topic>Polyvinyl alcohol</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Silicon dioxide</topic><topic>Sintering (powder metallurgy)</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Transitional aluminas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhonghong</creatorcontrib><creatorcontrib>Yang, Zupei</creatorcontrib><creatorcontrib>Qiu, Nongxue</creatorcontrib><creatorcontrib>Yang, Gongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhonghong</au><au>Yang, Zupei</au><au>Qiu, Nongxue</au><au>Yang, Gongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>46</volume><issue>9</issue><spage>3127</spage><epage>3135</epage><pages>3127-3135</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>A homogeneous α-Al 2 O 3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al 2 O 3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al 2 O 3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al 2 O 3 completely transformed into α-Al 2 O 3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al 2 O 3 intermediate layer to initially modify its surface. A single α-Al 2 O 3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO 2 , SiO 2 , and TiO 2 –SiO 2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al 2 O 3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-5193-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2011-05, Vol.46 (9), p.3127-3135
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259733762
source SpringerLink Journals
subjects Aluminum oxide
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystal defects
Crystallography and Scattering Methods
Grains
Interlayers
Materials Science
Membranes
Microfiltration
Polyethylene glycol
Polymer Sciences
Polyvinyl alcohol
Pore size
Porosity
Silicon dioxide
Sintering (powder metallurgy)
Sol-gel processes
Solid Mechanics
Stainless steel
Stainless steels
Substrates
Thickness
Titanium dioxide
Transitional aluminas
title A sol–gel-derived α-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2–SiO2 hybrid membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sol%E2%80%93gel-derived%20%CE%B1-Al2O3%20crystal%20interlayer%20modified%20316L%20porous%20stainless%20steel%20to%20support%20TiO2,%20SiO2,%20and%20TiO2%E2%80%93SiO2%20hybrid%20membranes&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Zhonghong&rft.date=2011-05-01&rft.volume=46&rft.issue=9&rft.spage=3127&rft.epage=3135&rft.pages=3127-3135&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-5193-x&rft_dat=%3Cproquest_cross%3E2259733762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259733762&rft_id=info:pmid/&rfr_iscdi=true