Dynamic monitoring of thermally assisted assembly of colloidal crystals

The dynamic monitor is considerably valuable to thoroughly understand the self-assembly process and is beneficial for the effective control of ordered colloidal crystal. In this study, the three-dimensional ordered colloidal crystals are fabricated through thermally assisted self-assembly, which are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-07, Vol.52 (13), p.7883-7892
Hauptverfasser: Liu, Fangfang, Xiu, Jinghai, Tang, Bingtao, Zhao, Defeng, Zhang, Shufen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7892
container_issue 13
container_start_page 7883
container_title Journal of materials science
container_volume 52
creator Liu, Fangfang
Xiu, Jinghai
Tang, Bingtao
Zhao, Defeng
Zhang, Shufen
description The dynamic monitor is considerably valuable to thoroughly understand the self-assembly process and is beneficial for the effective control of ordered colloidal crystal. In this study, the three-dimensional ordered colloidal crystals are fabricated through thermally assisted self-assembly, which are in situ monitored by fiber-optic spectrometer and micro-digital technology. The assembly process occurs layer by layer from top to bottom. The evaporated water-dragged microspheres assemble into the final close-packing face-centered cubic arrangement. During self-assembly, water between microspheres is gradually replaced by air, resulting in the change of effective refractive index, as well as evident color change and blue shifting of wavelength peaks. The effect of self-assembly temperature (60, 70, 80, and 90 °C) and polystyrene microspheres concentration (4, 6, 8, and 10 wt%) are both investigated on the basis of dynamic monitoring of the thermally assisted assembly of colloidal crystal structural color. As confirmed, the emulsion of 10% mass fraction self-assembled at 70 °C can obtain a superior color film structure.
doi_str_mv 10.1007/s10853-017-1061-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259638481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550951536</galeid><sourcerecordid>A550951536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-6fdeecc9ba7d6200ba5f1f2d9c155e7b69e0e38260710f6286530a935029aff73</originalsourceid><addsrcrecordid>eNp1kU1LwzAYx4MoOKcfwFvBk4fOJ8mStMcxdQoDwZdzyNJkdrTNTDKw396UCrKD5PCEJ79f3v4IXWOYYQBxFzAUjOaARY6B45ycoAlmgubzAugpmgAQkpM5x-foIoQdADBB8ASt7vtOtbXOWtfV0fm622bOZvHT-FY1TZ-pEOoQTTVMTLtJnbSsXdO4ulJNpn0fomrCJTqzqZir3zpFH48P78unfP2yel4u1rmmRRlzbitjtC43SlScAGwUs9iSqtSYMSM2vDRgaEE4CAyWk4IzCqqkDEiprBV0im7GfffefR1MiHLnDr5LR0pCWMlpMS9womYjtVWNkXVnXfRKp1GZ9FbXGVun_oIxKBlmlCfh9khITDTfcasOIcjnt9djFo-s9i4Eb6zc-7pVvpcY5BCGHMOQKQw5hCFJcsjohP3wxcb_Xft_6QdQ-osr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259638481</pqid></control><display><type>article</type><title>Dynamic monitoring of thermally assisted assembly of colloidal crystals</title><source>SpringerLink Journals</source><creator>Liu, Fangfang ; Xiu, Jinghai ; Tang, Bingtao ; Zhao, Defeng ; Zhang, Shufen</creator><creatorcontrib>Liu, Fangfang ; Xiu, Jinghai ; Tang, Bingtao ; Zhao, Defeng ; Zhang, Shufen</creatorcontrib><description>The dynamic monitor is considerably valuable to thoroughly understand the self-assembly process and is beneficial for the effective control of ordered colloidal crystal. In this study, the three-dimensional ordered colloidal crystals are fabricated through thermally assisted self-assembly, which are in situ monitored by fiber-optic spectrometer and micro-digital technology. The assembly process occurs layer by layer from top to bottom. The evaporated water-dragged microspheres assemble into the final close-packing face-centered cubic arrangement. During self-assembly, water between microspheres is gradually replaced by air, resulting in the change of effective refractive index, as well as evident color change and blue shifting of wavelength peaks. The effect of self-assembly temperature (60, 70, 80, and 90 °C) and polystyrene microspheres concentration (4, 6, 8, and 10 wt%) are both investigated on the basis of dynamic monitoring of the thermally assisted assembly of colloidal crystal structural color. As confirmed, the emulsion of 10% mass fraction self-assembled at 70 °C can obtain a superior color film structure.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1061-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Colloiding ; Color ; Crystal structure ; Crystallography and Scattering Methods ; Fiber optics ; Materials Science ; Microspheres ; Monitoring ; Optical fibers ; Polymer Sciences ; Polymers ; Polystyrene resins ; Refractivity ; Self-assembly ; Solid Mechanics</subject><ispartof>Journal of materials science, 2017-07, Vol.52 (13), p.7883-7892</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-6fdeecc9ba7d6200ba5f1f2d9c155e7b69e0e38260710f6286530a935029aff73</citedby><cites>FETCH-LOGICAL-c389t-6fdeecc9ba7d6200ba5f1f2d9c155e7b69e0e38260710f6286530a935029aff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1061-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1061-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Fangfang</creatorcontrib><creatorcontrib>Xiu, Jinghai</creatorcontrib><creatorcontrib>Tang, Bingtao</creatorcontrib><creatorcontrib>Zhao, Defeng</creatorcontrib><creatorcontrib>Zhang, Shufen</creatorcontrib><title>Dynamic monitoring of thermally assisted assembly of colloidal crystals</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The dynamic monitor is considerably valuable to thoroughly understand the self-assembly process and is beneficial for the effective control of ordered colloidal crystal. In this study, the three-dimensional ordered colloidal crystals are fabricated through thermally assisted self-assembly, which are in situ monitored by fiber-optic spectrometer and micro-digital technology. The assembly process occurs layer by layer from top to bottom. The evaporated water-dragged microspheres assemble into the final close-packing face-centered cubic arrangement. During self-assembly, water between microspheres is gradually replaced by air, resulting in the change of effective refractive index, as well as evident color change and blue shifting of wavelength peaks. The effect of self-assembly temperature (60, 70, 80, and 90 °C) and polystyrene microspheres concentration (4, 6, 8, and 10 wt%) are both investigated on the basis of dynamic monitoring of the thermally assisted assembly of colloidal crystal structural color. As confirmed, the emulsion of 10% mass fraction self-assembled at 70 °C can obtain a superior color film structure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Colloiding</subject><subject>Color</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Fiber optics</subject><subject>Materials Science</subject><subject>Microspheres</subject><subject>Monitoring</subject><subject>Optical fibers</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Polystyrene resins</subject><subject>Refractivity</subject><subject>Self-assembly</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1LwzAYx4MoOKcfwFvBk4fOJ8mStMcxdQoDwZdzyNJkdrTNTDKw396UCrKD5PCEJ79f3v4IXWOYYQBxFzAUjOaARY6B45ycoAlmgubzAugpmgAQkpM5x-foIoQdADBB8ASt7vtOtbXOWtfV0fm622bOZvHT-FY1TZ-pEOoQTTVMTLtJnbSsXdO4ulJNpn0fomrCJTqzqZir3zpFH48P78unfP2yel4u1rmmRRlzbitjtC43SlScAGwUs9iSqtSYMSM2vDRgaEE4CAyWk4IzCqqkDEiprBV0im7GfffefR1MiHLnDr5LR0pCWMlpMS9womYjtVWNkXVnXfRKp1GZ9FbXGVun_oIxKBlmlCfh9khITDTfcasOIcjnt9djFo-s9i4Eb6zc-7pVvpcY5BCGHMOQKQw5hCFJcsjohP3wxcb_Xft_6QdQ-osr</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Liu, Fangfang</creator><creator>Xiu, Jinghai</creator><creator>Tang, Bingtao</creator><creator>Zhao, Defeng</creator><creator>Zhang, Shufen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Dynamic monitoring of thermally assisted assembly of colloidal crystals</title><author>Liu, Fangfang ; Xiu, Jinghai ; Tang, Bingtao ; Zhao, Defeng ; Zhang, Shufen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-6fdeecc9ba7d6200ba5f1f2d9c155e7b69e0e38260710f6286530a935029aff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Colloiding</topic><topic>Color</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Fiber optics</topic><topic>Materials Science</topic><topic>Microspheres</topic><topic>Monitoring</topic><topic>Optical fibers</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Polystyrene resins</topic><topic>Refractivity</topic><topic>Self-assembly</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fangfang</creatorcontrib><creatorcontrib>Xiu, Jinghai</creatorcontrib><creatorcontrib>Tang, Bingtao</creatorcontrib><creatorcontrib>Zhao, Defeng</creatorcontrib><creatorcontrib>Zhang, Shufen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fangfang</au><au>Xiu, Jinghai</au><au>Tang, Bingtao</au><au>Zhao, Defeng</au><au>Zhang, Shufen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic monitoring of thermally assisted assembly of colloidal crystals</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>52</volume><issue>13</issue><spage>7883</spage><epage>7892</epage><pages>7883-7892</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The dynamic monitor is considerably valuable to thoroughly understand the self-assembly process and is beneficial for the effective control of ordered colloidal crystal. In this study, the three-dimensional ordered colloidal crystals are fabricated through thermally assisted self-assembly, which are in situ monitored by fiber-optic spectrometer and micro-digital technology. The assembly process occurs layer by layer from top to bottom. The evaporated water-dragged microspheres assemble into the final close-packing face-centered cubic arrangement. During self-assembly, water between microspheres is gradually replaced by air, resulting in the change of effective refractive index, as well as evident color change and blue shifting of wavelength peaks. The effect of self-assembly temperature (60, 70, 80, and 90 °C) and polystyrene microspheres concentration (4, 6, 8, and 10 wt%) are both investigated on the basis of dynamic monitoring of the thermally assisted assembly of colloidal crystal structural color. As confirmed, the emulsion of 10% mass fraction self-assembled at 70 °C can obtain a superior color film structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1061-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-07, Vol.52 (13), p.7883-7892
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259638481
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Colloiding
Color
Crystal structure
Crystallography and Scattering Methods
Fiber optics
Materials Science
Microspheres
Monitoring
Optical fibers
Polymer Sciences
Polymers
Polystyrene resins
Refractivity
Self-assembly
Solid Mechanics
title Dynamic monitoring of thermally assisted assembly of colloidal crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20monitoring%20of%20thermally%20assisted%20assembly%20of%20colloidal%20crystals&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Fangfang&rft.date=2017-07-01&rft.volume=52&rft.issue=13&rft.spage=7883&rft.epage=7892&rft.pages=7883-7892&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1061-2&rft_dat=%3Cgale_proqu%3EA550951536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259638481&rft_id=info:pmid/&rft_galeid=A550951536&rfr_iscdi=true