Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys
Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019, Vol.54 (2), p.1857-1871 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1871 |
---|---|
container_issue | 2 |
container_start_page | 1857 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Nasim, Wahaz Yazdi, Sadegh Santamarta, Ruben Malik, Jahanzaib Erdeniz, Dinc Mansoor, Bilal Seidman, David N. Dunand, David C. Karaman, Ibrahim |
description | Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1
2
-ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al
3
(Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1
2
-ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1
2
-ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations. |
doi_str_mv | 10.1007/s10853-018-2941-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259638341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560606279</galeid><sourcerecordid>A560606279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxy0EEkvhAbhF4sQhZfyZ5LiqCq1UCYkFDlwsxzvJumTjYDuivfUd-oY8CY6CVPVANdL4Y37_GVt_Qt5SOKUA1YdIoZa8BFqXrBG0bJ6RDZUVL0UN_DnZADBWMqHoS_IqxmsAkBWjG_Jzl8Js0xywMOO-6IP_nQ6F7wrrA_65u48HHIZiNKOfAlo3uWQSxsKNxXbI5fOQ087m9GPZfV9Orji4_lAmPE4YzNp6GPxtfE1edGaI-ObfekK-fTz_enZRXn3-dHm2vSqtUJDKDjpaY8ssw1pRJZXcY20k5yg4Nhy4EEpgh7lUcSUtyz_ZK6hagFa0rOUn5N3adwr-14wx6Ws_hzGP1IzJRvGaC_okRVnF8xC6UKcr1ZsBtRs7n4KxOfZ4dNaP2Ll8v5UKcrCqyYL3jwSZSXiTejPHqC93Xx6zdGVt8DEG7PQU3NGEW01BL7bq1VadbdWLrXrRsFUTMzv2GB6e_X_RX22EqIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259638341</pqid></control><display><type>article</type><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><source>SpringerLink Journals</source><creator>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</creator><creatorcontrib>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</creatorcontrib><description>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1
2
-ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al
3
(Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1
2
-ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1
2
-ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2941-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum (Metal) ; Aluminum alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Core-shell structure ; Crystallography and Scattering Methods ; Defects ; Energy dispersive X ray spectroscopy ; Growth ; Heat resistant alloys ; Heat treatment ; High temperature ; Materials Science ; Mechanical properties ; Melt temperature ; Metals ; Overaging ; Polymer Sciences ; Scandium ; Scanning transmission electron microscopy ; Silicon ; Silicon base alloys ; Solid Mechanics ; Specialty metals industry ; Superlattices ; Transmission electron microscopy ; X ray spectra ; Zirconium</subject><ispartof>Journal of materials science, 2019, Vol.54 (2), p.1857-1871</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science & Business Media 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</citedby><cites>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</cites><orcidid>0000-0001-6461-4958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2941-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2941-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nasim, Wahaz</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Santamarta, Ruben</creatorcontrib><creatorcontrib>Malik, Jahanzaib</creatorcontrib><creatorcontrib>Erdeniz, Dinc</creatorcontrib><creatorcontrib>Mansoor, Bilal</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><creatorcontrib>Karaman, Ibrahim</creatorcontrib><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1
2
-ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al
3
(Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1
2
-ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1
2
-ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</description><subject>Aluminum (Metal)</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Core-shell structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Defects</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Growth</subject><subject>Heat resistant alloys</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Melt temperature</subject><subject>Metals</subject><subject>Overaging</subject><subject>Polymer Sciences</subject><subject>Scandium</subject><subject>Scanning transmission electron microscopy</subject><subject>Silicon</subject><subject>Silicon base alloys</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Superlattices</subject><subject>Transmission electron microscopy</subject><subject>X ray spectra</subject><subject>Zirconium</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1u1DAQxy0EEkvhAbhF4sQhZfyZ5LiqCq1UCYkFDlwsxzvJumTjYDuivfUd-oY8CY6CVPVANdL4Y37_GVt_Qt5SOKUA1YdIoZa8BFqXrBG0bJ6RDZUVL0UN_DnZADBWMqHoS_IqxmsAkBWjG_Jzl8Js0xywMOO-6IP_nQ6F7wrrA_65u48HHIZiNKOfAlo3uWQSxsKNxXbI5fOQ087m9GPZfV9Orji4_lAmPE4YzNp6GPxtfE1edGaI-ObfekK-fTz_enZRXn3-dHm2vSqtUJDKDjpaY8ssw1pRJZXcY20k5yg4Nhy4EEpgh7lUcSUtyz_ZK6hagFa0rOUn5N3adwr-14wx6Ws_hzGP1IzJRvGaC_okRVnF8xC6UKcr1ZsBtRs7n4KxOfZ4dNaP2Ll8v5UKcrCqyYL3jwSZSXiTejPHqC93Xx6zdGVt8DEG7PQU3NGEW01BL7bq1VadbdWLrXrRsFUTMzv2GB6e_X_RX22EqIw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nasim, Wahaz</creator><creator>Yazdi, Sadegh</creator><creator>Santamarta, Ruben</creator><creator>Malik, Jahanzaib</creator><creator>Erdeniz, Dinc</creator><creator>Mansoor, Bilal</creator><creator>Seidman, David N.</creator><creator>Dunand, David C.</creator><creator>Karaman, Ibrahim</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6461-4958</orcidid></search><sort><creationdate>2019</creationdate><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><author>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum (Metal)</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Core-shell structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Defects</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Growth</topic><topic>Heat resistant alloys</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Melt temperature</topic><topic>Metals</topic><topic>Overaging</topic><topic>Polymer Sciences</topic><topic>Scandium</topic><topic>Scanning transmission electron microscopy</topic><topic>Silicon</topic><topic>Silicon base alloys</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Superlattices</topic><topic>Transmission electron microscopy</topic><topic>X ray spectra</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasim, Wahaz</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Santamarta, Ruben</creatorcontrib><creatorcontrib>Malik, Jahanzaib</creatorcontrib><creatorcontrib>Erdeniz, Dinc</creatorcontrib><creatorcontrib>Mansoor, Bilal</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><creatorcontrib>Karaman, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasim, Wahaz</au><au>Yazdi, Sadegh</au><au>Santamarta, Ruben</au><au>Malik, Jahanzaib</au><au>Erdeniz, Dinc</au><au>Mansoor, Bilal</au><au>Seidman, David N.</au><au>Dunand, David C.</au><au>Karaman, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019</date><risdate>2019</risdate><volume>54</volume><issue>2</issue><spage>1857</spage><epage>1871</epage><pages>1857-1871</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1
2
-ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al
3
(Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1
2
-ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1
2
-ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2941-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6461-4958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019, Vol.54 (2), p.1857-1871 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259638341 |
source | SpringerLink Journals |
subjects | Aluminum (Metal) Aluminum alloys Aluminum base alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Core-shell structure Crystallography and Scattering Methods Defects Energy dispersive X ray spectroscopy Growth Heat resistant alloys Heat treatment High temperature Materials Science Mechanical properties Melt temperature Metals Overaging Polymer Sciences Scandium Scanning transmission electron microscopy Silicon Silicon base alloys Solid Mechanics Specialty metals industry Superlattices Transmission electron microscopy X ray spectra Zirconium |
title | Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20growth%20of%20core%E2%80%93shell%20nanoprecipitates%20in%20Al%E2%80%93Er%E2%80%93Sc%E2%80%93Zr%E2%80%93V%E2%80%93Si%20high-temperature%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nasim,%20Wahaz&rft.date=2019&rft.volume=54&rft.issue=2&rft.spage=1857&rft.epage=1871&rft.pages=1857-1871&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2941-9&rft_dat=%3Cgale_proqu%3EA560606279%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259638341&rft_id=info:pmid/&rft_galeid=A560606279&rfr_iscdi=true |