Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys

Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019, Vol.54 (2), p.1857-1871
Hauptverfasser: Nasim, Wahaz, Yazdi, Sadegh, Santamarta, Ruben, Malik, Jahanzaib, Erdeniz, Dinc, Mansoor, Bilal, Seidman, David N., Dunand, David C., Karaman, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1871
container_issue 2
container_start_page 1857
container_title Journal of materials science
container_volume 54
creator Nasim, Wahaz
Yazdi, Sadegh
Santamarta, Ruben
Malik, Jahanzaib
Erdeniz, Dinc
Mansoor, Bilal
Seidman, David N.
Dunand, David C.
Karaman, Ibrahim
description Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al 3 (Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1 2 -ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1 2 -ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.
doi_str_mv 10.1007/s10853-018-2941-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259638341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560606279</galeid><sourcerecordid>A560606279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</originalsourceid><addsrcrecordid>eNp9kc1u1DAQxy0EEkvhAbhF4sQhZfyZ5LiqCq1UCYkFDlwsxzvJumTjYDuivfUd-oY8CY6CVPVANdL4Y37_GVt_Qt5SOKUA1YdIoZa8BFqXrBG0bJ6RDZUVL0UN_DnZADBWMqHoS_IqxmsAkBWjG_Jzl8Js0xywMOO-6IP_nQ6F7wrrA_65u48HHIZiNKOfAlo3uWQSxsKNxXbI5fOQ087m9GPZfV9Orji4_lAmPE4YzNp6GPxtfE1edGaI-ObfekK-fTz_enZRXn3-dHm2vSqtUJDKDjpaY8ssw1pRJZXcY20k5yg4Nhy4EEpgh7lUcSUtyz_ZK6hagFa0rOUn5N3adwr-14wx6Ws_hzGP1IzJRvGaC_okRVnF8xC6UKcr1ZsBtRs7n4KxOfZ4dNaP2Ll8v5UKcrCqyYL3jwSZSXiTejPHqC93Xx6zdGVt8DEG7PQU3NGEW01BL7bq1VadbdWLrXrRsFUTMzv2GB6e_X_RX22EqIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259638341</pqid></control><display><type>article</type><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><source>SpringerLink Journals</source><creator>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</creator><creatorcontrib>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</creatorcontrib><description>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al 3 (Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1 2 -ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1 2 -ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2941-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum (Metal) ; Aluminum alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Core-shell structure ; Crystallography and Scattering Methods ; Defects ; Energy dispersive X ray spectroscopy ; Growth ; Heat resistant alloys ; Heat treatment ; High temperature ; Materials Science ; Mechanical properties ; Melt temperature ; Metals ; Overaging ; Polymer Sciences ; Scandium ; Scanning transmission electron microscopy ; Silicon ; Silicon base alloys ; Solid Mechanics ; Specialty metals industry ; Superlattices ; Transmission electron microscopy ; X ray spectra ; Zirconium</subject><ispartof>Journal of materials science, 2019, Vol.54 (2), p.1857-1871</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2019</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</citedby><cites>FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</cites><orcidid>0000-0001-6461-4958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2941-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2941-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nasim, Wahaz</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Santamarta, Ruben</creatorcontrib><creatorcontrib>Malik, Jahanzaib</creatorcontrib><creatorcontrib>Erdeniz, Dinc</creatorcontrib><creatorcontrib>Mansoor, Bilal</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><creatorcontrib>Karaman, Ibrahim</creatorcontrib><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al 3 (Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1 2 -ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1 2 -ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</description><subject>Aluminum (Metal)</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Core-shell structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Defects</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Growth</subject><subject>Heat resistant alloys</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Melt temperature</subject><subject>Metals</subject><subject>Overaging</subject><subject>Polymer Sciences</subject><subject>Scandium</subject><subject>Scanning transmission electron microscopy</subject><subject>Silicon</subject><subject>Silicon base alloys</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Superlattices</subject><subject>Transmission electron microscopy</subject><subject>X ray spectra</subject><subject>Zirconium</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1u1DAQxy0EEkvhAbhF4sQhZfyZ5LiqCq1UCYkFDlwsxzvJumTjYDuivfUd-oY8CY6CVPVANdL4Y37_GVt_Qt5SOKUA1YdIoZa8BFqXrBG0bJ6RDZUVL0UN_DnZADBWMqHoS_IqxmsAkBWjG_Jzl8Js0xywMOO-6IP_nQ6F7wrrA_65u48HHIZiNKOfAlo3uWQSxsKNxXbI5fOQ087m9GPZfV9Orji4_lAmPE4YzNp6GPxtfE1edGaI-ObfekK-fTz_enZRXn3-dHm2vSqtUJDKDjpaY8ssw1pRJZXcY20k5yg4Nhy4EEpgh7lUcSUtyz_ZK6hagFa0rOUn5N3adwr-14wx6Ws_hzGP1IzJRvGaC_okRVnF8xC6UKcr1ZsBtRs7n4KxOfZ4dNaP2Ll8v5UKcrCqyYL3jwSZSXiTejPHqC93Xx6zdGVt8DEG7PQU3NGEW01BL7bq1VadbdWLrXrRsFUTMzv2GB6e_X_RX22EqIw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nasim, Wahaz</creator><creator>Yazdi, Sadegh</creator><creator>Santamarta, Ruben</creator><creator>Malik, Jahanzaib</creator><creator>Erdeniz, Dinc</creator><creator>Mansoor, Bilal</creator><creator>Seidman, David N.</creator><creator>Dunand, David C.</creator><creator>Karaman, Ibrahim</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6461-4958</orcidid></search><sort><creationdate>2019</creationdate><title>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</title><author>Nasim, Wahaz ; Yazdi, Sadegh ; Santamarta, Ruben ; Malik, Jahanzaib ; Erdeniz, Dinc ; Mansoor, Bilal ; Seidman, David N. ; Dunand, David C. ; Karaman, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-f0f18eb2c2e8616565de8a533e43e93034464efe1657365c2572d607b00b4b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum (Metal)</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Core-shell structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Defects</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Growth</topic><topic>Heat resistant alloys</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Melt temperature</topic><topic>Metals</topic><topic>Overaging</topic><topic>Polymer Sciences</topic><topic>Scandium</topic><topic>Scanning transmission electron microscopy</topic><topic>Silicon</topic><topic>Silicon base alloys</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Superlattices</topic><topic>Transmission electron microscopy</topic><topic>X ray spectra</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasim, Wahaz</creatorcontrib><creatorcontrib>Yazdi, Sadegh</creatorcontrib><creatorcontrib>Santamarta, Ruben</creatorcontrib><creatorcontrib>Malik, Jahanzaib</creatorcontrib><creatorcontrib>Erdeniz, Dinc</creatorcontrib><creatorcontrib>Mansoor, Bilal</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Dunand, David C.</creatorcontrib><creatorcontrib>Karaman, Ibrahim</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasim, Wahaz</au><au>Yazdi, Sadegh</au><au>Santamarta, Ruben</au><au>Malik, Jahanzaib</au><au>Erdeniz, Dinc</au><au>Mansoor, Bilal</au><au>Seidman, David N.</au><au>Dunand, David C.</au><au>Karaman, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019</date><risdate>2019</risdate><volume>54</volume><issue>2</issue><spage>1857</spage><epage>1871</epage><pages>1857-1871</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Lightweight Sc-containing aluminum alloys exhibit superior mechanical performance at high temperatures due to core–shell, L1 2 -ordered trialuminide nanoprecipitates. In this study, the structure of these nanoprecipitates was studied, using different transmission electron microscopy (TEM) techniques, for an Al–Er–Sc–Zr–V–Si alloy that was subjected to a two-stage overaging heat treatment. Energy-dispersive X-ray spectroscopy of the spherical Al 3 (Sc, Zr, Er ,V) nanoprecipitates revealed a core–shell structure with an Sc- and Er-enriched core and a Zr-enriched shell, without a clear V outer shell. This structure is stable up to 72% of the absolute melting temperature of Al for extended periods of time. High-angle annular dark-field scanning TEM was used to image the {100} planes of the nanoprecipitates, demonstrating a homogeneous L1 2 -ordered superlattice structure for the entire nanoprecipitates, despite the variations in the concentrations of solute atoms within the unit cells. A possible growth path and compositional trajectory for these nanoprecipitates was proposed using high-resolution TEM observations, where different rod-like structural defects were detected, which are considered to be precursors to the spherical L1 2 -ordered nanoprecipitates. It is also hypothesized that the structural defects could consist of segregated Si; however, this was not possible to verify with HAADF-STEM because of the small differences in Al and Si atomic numbers. The results herein allow a better understanding of how the Al–Sc alloys’ core–shell nanoprecipitates form and evolve temporally, thereby providing a better physical picture for future atomistic structural mappings and simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2941-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6461-4958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019, Vol.54 (2), p.1857-1871
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259638341
source SpringerLink Journals
subjects Aluminum (Metal)
Aluminum alloys
Aluminum base alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Core-shell structure
Crystallography and Scattering Methods
Defects
Energy dispersive X ray spectroscopy
Growth
Heat resistant alloys
Heat treatment
High temperature
Materials Science
Mechanical properties
Melt temperature
Metals
Overaging
Polymer Sciences
Scandium
Scanning transmission electron microscopy
Silicon
Silicon base alloys
Solid Mechanics
Specialty metals industry
Superlattices
Transmission electron microscopy
X ray spectra
Zirconium
title Structure and growth of core–shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20growth%20of%20core%E2%80%93shell%20nanoprecipitates%20in%20Al%E2%80%93Er%E2%80%93Sc%E2%80%93Zr%E2%80%93V%E2%80%93Si%20high-temperature%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nasim,%20Wahaz&rft.date=2019&rft.volume=54&rft.issue=2&rft.spage=1857&rft.epage=1871&rft.pages=1857-1871&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2941-9&rft_dat=%3Cgale_proqu%3EA560606279%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259638341&rft_id=info:pmid/&rft_galeid=A560606279&rfr_iscdi=true