Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials
Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCM...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2018-11, Vol.53 (22), p.15500-15513 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15513 |
---|---|
container_issue | 22 |
container_start_page | 15500 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Luo, Dajun Wei, Fujian Shao, Huiju Xiang, Li Yang, Jingkui Cui, Zhenyu Qin, Shuhao Yu, Jie |
description | Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCMs (PC-PHFM-CPCMs) with weavability were fabricated for thermal energy storage. In order to select a PHFM with optimum stretching ratio as the supporting material for the flexible ss-CPCMs, PHFMs with different stretching ratios were fabricated to encapsulate the paraffin as novel flexible ss-CPCMs (P-PHFM-CPCMs). The effects of stretching ratios on the latent heats and absorption capacity were investigated. PHFM200 (polypropylene hollow fiber stretched by 200%) showed the high porosity (65.2%) and tensile strength (119.9 MPa), and the corresponding P-PHFM-CPCM200 had the largest latent heats in the melting process and solidifying process (73.90 and 76.71 J/g) and maximum paraffin absorption capacity (52.42 wt%) compared to other candidates. Paraffin/MWCNTs mixtures with high thermal conductivity were injected into the columned cavity of P-PHFM-CPCM200 to further enhance the paraffin encapsulation capacity and significantly improve their heat transfer. Among all PC-PHFM-CPCMs, PC0-PHFM-CPCM200 exhibited the maximum paraffin encapsulation capacity of 80.97 wt%. The thermal conductivity of PC-PHFM-CPCMs was obviously enhanced with the increase in the weight ratio of MWCNTs. PC4-PHFM-CPCM200 achieved the highest thermal conductivity of 0.46 W/m K, which was obviously improved by 100%. The corresponding latent heat in the solidification process was 109.2 J/g. In addition, excellent chemical compatibility and thermal stability of PC-PHFM-CPCMs were demonstrated by the Fourier transform infrared spectroscopy and thermo-gravimetric analysis. |
doi_str_mv | 10.1007/s10853-018-2722-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259637353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259637353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6e4e744a13229ba49493a00aee4156d67710ddba4c1d435a98cedc4849ab9c6a3</originalsourceid><addsrcrecordid>eNp1kctuFDEQRS0EEkPCB7CzxJZm_OzHEo0gREogEkEsrWp3ddpRt93YnsDkp_KLcTQIVqxKVXXPLZUuIW84e88Za7aJs1bLivG2Eo0QlX5GNlw3slItk8_JhrEyFKrmL8mrlG4ZY7oRfEMevk2wIk0Zeje7e8gu-Hc0TxgXmCl6jDeHsg0RbpD2OMGdC5GCH_5qbPDD3mZ35_KhABN4iwv6TMNIxxl_u35GukKEcXR-e_lj9-U6ba-u6BTmOfyio-sx0gWXPoLH4rasIblckAlS6YtfubxAxuhgTqfkxVgKvv5TT8j3Tx-vd5-ri69n57sPF5WVvM5VjQobpYBLIboeVKc6CYwBouK6Huqm4WwYysLyQUkNXWtxsKpVHfSdrUGekLdH3zWGn3tM2dyGffTlpBFCd7VspJZFxY8qG0NKEUezRrdAPBjOzFMu5piLKbmYp1yMLow4Mqloy2_xn_P_oUduCJSf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259637353</pqid></control><display><type>article</type><title>Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Luo, Dajun ; Wei, Fujian ; Shao, Huiju ; Xiang, Li ; Yang, Jingkui ; Cui, Zhenyu ; Qin, Shuhao ; Yu, Jie</creator><creatorcontrib>Luo, Dajun ; Wei, Fujian ; Shao, Huiju ; Xiang, Li ; Yang, Jingkui ; Cui, Zhenyu ; Qin, Shuhao ; Yu, Jie</creatorcontrib><description>Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCMs (PC-PHFM-CPCMs) with weavability were fabricated for thermal energy storage. In order to select a PHFM with optimum stretching ratio as the supporting material for the flexible ss-CPCMs, PHFMs with different stretching ratios were fabricated to encapsulate the paraffin as novel flexible ss-CPCMs (P-PHFM-CPCMs). The effects of stretching ratios on the latent heats and absorption capacity were investigated. PHFM200 (polypropylene hollow fiber stretched by 200%) showed the high porosity (65.2%) and tensile strength (119.9 MPa), and the corresponding P-PHFM-CPCM200 had the largest latent heats in the melting process and solidifying process (73.90 and 76.71 J/g) and maximum paraffin absorption capacity (52.42 wt%) compared to other candidates. Paraffin/MWCNTs mixtures with high thermal conductivity were injected into the columned cavity of P-PHFM-CPCM200 to further enhance the paraffin encapsulation capacity and significantly improve their heat transfer. Among all PC-PHFM-CPCMs, PC0-PHFM-CPCM200 exhibited the maximum paraffin encapsulation capacity of 80.97 wt%. The thermal conductivity of PC-PHFM-CPCMs was obviously enhanced with the increase in the weight ratio of MWCNTs. PC4-PHFM-CPCM200 achieved the highest thermal conductivity of 0.46 W/m K, which was obviously improved by 100%. The corresponding latent heat in the solidification process was 109.2 J/g. In addition, excellent chemical compatibility and thermal stability of PC-PHFM-CPCMs were demonstrated by the Fourier transform infrared spectroscopy and thermo-gravimetric analysis.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2722-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption ; Characterization and Evaluation of Materials ; Chemical compatibility ; Chemistry and Materials Science ; Classical Mechanics ; Composites ; Crystallography and Scattering Methods ; Encapsulation ; Energy storage ; Fourier transforms ; Gravimetric analysis ; Heat conductivity ; Heat transfer ; Hollow fiber membranes ; Infrared analysis ; Latent heat ; Materials Science ; Multi wall carbon nanotubes ; Organic chemistry ; Paraffins ; Phase change materials ; Polymer Sciences ; Polypropylene ; Porosity ; Solid Mechanics ; Solidification ; Stretching ; Thermal conductivity ; Thermal energy ; Thermal stability</subject><ispartof>Journal of materials science, 2018-11, Vol.53 (22), p.15500-15513</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6e4e744a13229ba49493a00aee4156d67710ddba4c1d435a98cedc4849ab9c6a3</citedby><cites>FETCH-LOGICAL-c316t-6e4e744a13229ba49493a00aee4156d67710ddba4c1d435a98cedc4849ab9c6a3</cites><orcidid>0000-0001-5191-6746 ; 0000-0002-4418-2147 ; 0000-0003-4565-4916 ; 0000-0002-7446-5738 ; 0000-0002-3183-0336 ; 0000-0001-8680-3071 ; 0000-0002-6153-9638 ; 0000-0002-8765-6648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2722-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2722-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Luo, Dajun</creatorcontrib><creatorcontrib>Wei, Fujian</creatorcontrib><creatorcontrib>Shao, Huiju</creatorcontrib><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>Yang, Jingkui</creatorcontrib><creatorcontrib>Cui, Zhenyu</creatorcontrib><creatorcontrib>Qin, Shuhao</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><title>Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCMs (PC-PHFM-CPCMs) with weavability were fabricated for thermal energy storage. In order to select a PHFM with optimum stretching ratio as the supporting material for the flexible ss-CPCMs, PHFMs with different stretching ratios were fabricated to encapsulate the paraffin as novel flexible ss-CPCMs (P-PHFM-CPCMs). The effects of stretching ratios on the latent heats and absorption capacity were investigated. PHFM200 (polypropylene hollow fiber stretched by 200%) showed the high porosity (65.2%) and tensile strength (119.9 MPa), and the corresponding P-PHFM-CPCM200 had the largest latent heats in the melting process and solidifying process (73.90 and 76.71 J/g) and maximum paraffin absorption capacity (52.42 wt%) compared to other candidates. Paraffin/MWCNTs mixtures with high thermal conductivity were injected into the columned cavity of P-PHFM-CPCM200 to further enhance the paraffin encapsulation capacity and significantly improve their heat transfer. Among all PC-PHFM-CPCMs, PC0-PHFM-CPCM200 exhibited the maximum paraffin encapsulation capacity of 80.97 wt%. The thermal conductivity of PC-PHFM-CPCMs was obviously enhanced with the increase in the weight ratio of MWCNTs. PC4-PHFM-CPCM200 achieved the highest thermal conductivity of 0.46 W/m K, which was obviously improved by 100%. The corresponding latent heat in the solidification process was 109.2 J/g. In addition, excellent chemical compatibility and thermal stability of PC-PHFM-CPCMs were demonstrated by the Fourier transform infrared spectroscopy and thermo-gravimetric analysis.</description><subject>Absorption</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical compatibility</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composites</subject><subject>Crystallography and Scattering Methods</subject><subject>Encapsulation</subject><subject>Energy storage</subject><subject>Fourier transforms</subject><subject>Gravimetric analysis</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hollow fiber membranes</subject><subject>Infrared analysis</subject><subject>Latent heat</subject><subject>Materials Science</subject><subject>Multi wall carbon nanotubes</subject><subject>Organic chemistry</subject><subject>Paraffins</subject><subject>Phase change materials</subject><subject>Polymer Sciences</subject><subject>Polypropylene</subject><subject>Porosity</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Stretching</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal stability</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kctuFDEQRS0EEkPCB7CzxJZm_OzHEo0gREogEkEsrWp3ddpRt93YnsDkp_KLcTQIVqxKVXXPLZUuIW84e88Za7aJs1bLivG2Eo0QlX5GNlw3slItk8_JhrEyFKrmL8mrlG4ZY7oRfEMevk2wIk0Zeje7e8gu-Hc0TxgXmCl6jDeHsg0RbpD2OMGdC5GCH_5qbPDD3mZ35_KhABN4iwv6TMNIxxl_u35GukKEcXR-e_lj9-U6ba-u6BTmOfyio-sx0gWXPoLH4rasIblckAlS6YtfubxAxuhgTqfkxVgKvv5TT8j3Tx-vd5-ri69n57sPF5WVvM5VjQobpYBLIboeVKc6CYwBouK6Huqm4WwYysLyQUkNXWtxsKpVHfSdrUGekLdH3zWGn3tM2dyGffTlpBFCd7VspJZFxY8qG0NKEUezRrdAPBjOzFMu5piLKbmYp1yMLow4Mqloy2_xn_P_oUduCJSf</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Luo, Dajun</creator><creator>Wei, Fujian</creator><creator>Shao, Huiju</creator><creator>Xiang, Li</creator><creator>Yang, Jingkui</creator><creator>Cui, Zhenyu</creator><creator>Qin, Shuhao</creator><creator>Yu, Jie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5191-6746</orcidid><orcidid>https://orcid.org/0000-0002-4418-2147</orcidid><orcidid>https://orcid.org/0000-0003-4565-4916</orcidid><orcidid>https://orcid.org/0000-0002-7446-5738</orcidid><orcidid>https://orcid.org/0000-0002-3183-0336</orcidid><orcidid>https://orcid.org/0000-0001-8680-3071</orcidid><orcidid>https://orcid.org/0000-0002-6153-9638</orcidid><orcidid>https://orcid.org/0000-0002-8765-6648</orcidid></search><sort><creationdate>20181101</creationdate><title>Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials</title><author>Luo, Dajun ; Wei, Fujian ; Shao, Huiju ; Xiang, Li ; Yang, Jingkui ; Cui, Zhenyu ; Qin, Shuhao ; Yu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6e4e744a13229ba49493a00aee4156d67710ddba4c1d435a98cedc4849ab9c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical compatibility</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composites</topic><topic>Crystallography and Scattering Methods</topic><topic>Encapsulation</topic><topic>Energy storage</topic><topic>Fourier transforms</topic><topic>Gravimetric analysis</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hollow fiber membranes</topic><topic>Infrared analysis</topic><topic>Latent heat</topic><topic>Materials Science</topic><topic>Multi wall carbon nanotubes</topic><topic>Organic chemistry</topic><topic>Paraffins</topic><topic>Phase change materials</topic><topic>Polymer Sciences</topic><topic>Polypropylene</topic><topic>Porosity</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Stretching</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Dajun</creatorcontrib><creatorcontrib>Wei, Fujian</creatorcontrib><creatorcontrib>Shao, Huiju</creatorcontrib><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>Yang, Jingkui</creatorcontrib><creatorcontrib>Cui, Zhenyu</creatorcontrib><creatorcontrib>Qin, Shuhao</creatorcontrib><creatorcontrib>Yu, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Dajun</au><au>Wei, Fujian</au><au>Shao, Huiju</au><au>Xiang, Li</au><au>Yang, Jingkui</au><au>Cui, Zhenyu</au><au>Qin, Shuhao</au><au>Yu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>53</volume><issue>22</issue><spage>15500</spage><epage>15513</epage><pages>15500-15513</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCMs (PC-PHFM-CPCMs) with weavability were fabricated for thermal energy storage. In order to select a PHFM with optimum stretching ratio as the supporting material for the flexible ss-CPCMs, PHFMs with different stretching ratios were fabricated to encapsulate the paraffin as novel flexible ss-CPCMs (P-PHFM-CPCMs). The effects of stretching ratios on the latent heats and absorption capacity were investigated. PHFM200 (polypropylene hollow fiber stretched by 200%) showed the high porosity (65.2%) and tensile strength (119.9 MPa), and the corresponding P-PHFM-CPCM200 had the largest latent heats in the melting process and solidifying process (73.90 and 76.71 J/g) and maximum paraffin absorption capacity (52.42 wt%) compared to other candidates. Paraffin/MWCNTs mixtures with high thermal conductivity were injected into the columned cavity of P-PHFM-CPCM200 to further enhance the paraffin encapsulation capacity and significantly improve their heat transfer. Among all PC-PHFM-CPCMs, PC0-PHFM-CPCM200 exhibited the maximum paraffin encapsulation capacity of 80.97 wt%. The thermal conductivity of PC-PHFM-CPCMs was obviously enhanced with the increase in the weight ratio of MWCNTs. PC4-PHFM-CPCM200 achieved the highest thermal conductivity of 0.46 W/m K, which was obviously improved by 100%. The corresponding latent heat in the solidification process was 109.2 J/g. In addition, excellent chemical compatibility and thermal stability of PC-PHFM-CPCMs were demonstrated by the Fourier transform infrared spectroscopy and thermo-gravimetric analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2722-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5191-6746</orcidid><orcidid>https://orcid.org/0000-0002-4418-2147</orcidid><orcidid>https://orcid.org/0000-0003-4565-4916</orcidid><orcidid>https://orcid.org/0000-0002-7446-5738</orcidid><orcidid>https://orcid.org/0000-0002-3183-0336</orcidid><orcidid>https://orcid.org/0000-0001-8680-3071</orcidid><orcidid>https://orcid.org/0000-0002-6153-9638</orcidid><orcidid>https://orcid.org/0000-0002-8765-6648</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018-11, Vol.53 (22), p.15500-15513 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259637353 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorption Characterization and Evaluation of Materials Chemical compatibility Chemistry and Materials Science Classical Mechanics Composites Crystallography and Scattering Methods Encapsulation Energy storage Fourier transforms Gravimetric analysis Heat conductivity Heat transfer Hollow fiber membranes Infrared analysis Latent heat Materials Science Multi wall carbon nanotubes Organic chemistry Paraffins Phase change materials Polymer Sciences Polypropylene Porosity Solid Mechanics Solidification Stretching Thermal conductivity Thermal energy Thermal stability |
title | Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20stabilization,%20thermal%20energy%20storage%20behavior%20and%20thermal%20conductivity%20enhancement%20of%20flexible%20paraffin/MWCNTs/PP%20hollow%20fiber%20membrane%20composite%20phase%20change%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Luo,%20Dajun&rft.date=2018-11-01&rft.volume=53&rft.issue=22&rft.spage=15500&rft.epage=15513&rft.pages=15500-15513&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2722-5&rft_dat=%3Cproquest_cross%3E2259637353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259637353&rft_id=info:pmid/&rfr_iscdi=true |