Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy

Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-03, Vol.54 (6), p.4788-4797
Hauptverfasser: Wang, Xiao-yu, Wang, Hui-juan, Xiang, Bo, Shang, Hong-jing, Zhu, Bin, Yu, Yuan, Jin, Hui, Zhao, Run-fei, Huang, Zhong-yue, Liu, Lan-jun, Zu, Fang-qiu, Chen, Zhi-gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4797
container_issue 6
container_start_page 4788
container_title Journal of materials science
container_volume 54
creator Wang, Xiao-yu
Wang, Hui-juan
Xiang, Bo
Shang, Hong-jing
Zhu, Bin
Yu, Yuan
Jin, Hui
Zhao, Run-fei
Huang, Zhong-yue
Liu, Lan-jun
Zu, Fang-qiu
Chen, Zhi-gang
description Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m −1  K −1 (decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently, zT max  ~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.
doi_str_mv 10.1007/s10853-018-3172-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259636484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259636484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jkYze7x1r8goKXeg7pZrZN2WZrkhWKf94tFQTB0xzmed9hHkJuONxxAH2fOFSFZMArJrkWrD4hE15oyVQF8pRMAIRgQpX8nFyktAGAQgs-IV_TnK0PPqxoRDc06Ghnc_YN0rzGuLUdbfowLrL_9HlPbXAUw9qGA4kdNjn65i_kA7WJJR8yjqV0N0SkgeX9DumDFwuU1HZdv78iZ63tEl7_zEvy_vS4mL2w-dvz62w6Z42sRGb1cim1Kl1VtKoqNJeoEaxWjrtCuMNjjRRi6crW6XZZgwJV123JhYDSWgfyktwee3ex_xgwZbPphxjGk0aIoi5lqSo1UvxINbFPKWJrdtFvbdwbDubg2Bwdm9GxOTg29ZgRx0wa2bDC-Nv8f-gby3V_-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259636484</pqid></control><display><type>article</type><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</creator><creatorcontrib>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</creatorcontrib><description>Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m −1  K −1 (decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently, zT max  ~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-3172-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ball milling ; Bismuth tellurides ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dislocations ; Electrical resistivity ; Electronic Materials ; Heat conductivity ; Heat transfer ; Materials Science ; Plasma sintering ; Polymer Sciences ; Solid Mechanics ; Spark plasma sintering ; Thermal conductivity ; Transport properties</subject><ispartof>Journal of materials science, 2019-03, Vol.54 (6), p.4788-4797</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</citedby><cites>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</cites><orcidid>0000-0001-8275-1171 ; 0000-0002-5959-3731 ; 0000-0002-4877-393X ; 0000-0002-7928-5568 ; 0000-0002-3148-6600 ; 0000-0003-1857-6529 ; 0000-0001-8352-144X ; 0000-0002-3379-1668 ; 0000-0001-7891-9082 ; 0000-0002-9309-7993 ; 0000-0001-8231-3681 ; 0000-0003-4952-6225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-3172-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-3172-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xiao-yu</creatorcontrib><creatorcontrib>Wang, Hui-juan</creatorcontrib><creatorcontrib>Xiang, Bo</creatorcontrib><creatorcontrib>Shang, Hong-jing</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Jin, Hui</creatorcontrib><creatorcontrib>Zhao, Run-fei</creatorcontrib><creatorcontrib>Huang, Zhong-yue</creatorcontrib><creatorcontrib>Liu, Lan-jun</creatorcontrib><creatorcontrib>Zu, Fang-qiu</creatorcontrib><creatorcontrib>Chen, Zhi-gang</creatorcontrib><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m −1  K −1 (decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently, zT max  ~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</description><subject>Ball milling</subject><subject>Bismuth tellurides</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dislocations</subject><subject>Electrical resistivity</subject><subject>Electronic Materials</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Plasma sintering</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jkYze7x1r8goKXeg7pZrZN2WZrkhWKf94tFQTB0xzmed9hHkJuONxxAH2fOFSFZMArJrkWrD4hE15oyVQF8pRMAIRgQpX8nFyktAGAQgs-IV_TnK0PPqxoRDc06Ghnc_YN0rzGuLUdbfowLrL_9HlPbXAUw9qGA4kdNjn65i_kA7WJJR8yjqV0N0SkgeX9DumDFwuU1HZdv78iZ63tEl7_zEvy_vS4mL2w-dvz62w6Z42sRGb1cim1Kl1VtKoqNJeoEaxWjrtCuMNjjRRi6crW6XZZgwJV123JhYDSWgfyktwee3ex_xgwZbPphxjGk0aIoi5lqSo1UvxINbFPKWJrdtFvbdwbDubg2Bwdm9GxOTg29ZgRx0wa2bDC-Nv8f-gby3V_-Q</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Wang, Xiao-yu</creator><creator>Wang, Hui-juan</creator><creator>Xiang, Bo</creator><creator>Shang, Hong-jing</creator><creator>Zhu, Bin</creator><creator>Yu, Yuan</creator><creator>Jin, Hui</creator><creator>Zhao, Run-fei</creator><creator>Huang, Zhong-yue</creator><creator>Liu, Lan-jun</creator><creator>Zu, Fang-qiu</creator><creator>Chen, Zhi-gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8275-1171</orcidid><orcidid>https://orcid.org/0000-0002-5959-3731</orcidid><orcidid>https://orcid.org/0000-0002-4877-393X</orcidid><orcidid>https://orcid.org/0000-0002-7928-5568</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-1857-6529</orcidid><orcidid>https://orcid.org/0000-0001-8352-144X</orcidid><orcidid>https://orcid.org/0000-0002-3379-1668</orcidid><orcidid>https://orcid.org/0000-0001-7891-9082</orcidid><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0001-8231-3681</orcidid><orcidid>https://orcid.org/0000-0003-4952-6225</orcidid></search><sort><creationdate>20190301</creationdate><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><author>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ball milling</topic><topic>Bismuth tellurides</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dislocations</topic><topic>Electrical resistivity</topic><topic>Electronic Materials</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Plasma sintering</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao-yu</creatorcontrib><creatorcontrib>Wang, Hui-juan</creatorcontrib><creatorcontrib>Xiang, Bo</creatorcontrib><creatorcontrib>Shang, Hong-jing</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Jin, Hui</creatorcontrib><creatorcontrib>Zhao, Run-fei</creatorcontrib><creatorcontrib>Huang, Zhong-yue</creatorcontrib><creatorcontrib>Liu, Lan-jun</creatorcontrib><creatorcontrib>Zu, Fang-qiu</creatorcontrib><creatorcontrib>Chen, Zhi-gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao-yu</au><au>Wang, Hui-juan</au><au>Xiang, Bo</au><au>Shang, Hong-jing</au><au>Zhu, Bin</au><au>Yu, Yuan</au><au>Jin, Hui</au><au>Zhao, Run-fei</au><au>Huang, Zhong-yue</au><au>Liu, Lan-jun</au><au>Zu, Fang-qiu</au><au>Chen, Zhi-gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>54</volume><issue>6</issue><spage>4788</spage><epage>4797</epage><pages>4788-4797</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m −1  K −1 (decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently, zT max  ~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-3172-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8275-1171</orcidid><orcidid>https://orcid.org/0000-0002-5959-3731</orcidid><orcidid>https://orcid.org/0000-0002-4877-393X</orcidid><orcidid>https://orcid.org/0000-0002-7928-5568</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-1857-6529</orcidid><orcidid>https://orcid.org/0000-0001-8352-144X</orcidid><orcidid>https://orcid.org/0000-0002-3379-1668</orcidid><orcidid>https://orcid.org/0000-0001-7891-9082</orcidid><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0001-8231-3681</orcidid><orcidid>https://orcid.org/0000-0003-4952-6225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-03, Vol.54 (6), p.4788-4797
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259636484
source Springer Nature - Complete Springer Journals
subjects Ball milling
Bismuth tellurides
Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Dislocations
Electrical resistivity
Electronic Materials
Heat conductivity
Heat transfer
Materials Science
Plasma sintering
Polymer Sciences
Solid Mechanics
Spark plasma sintering
Thermal conductivity
Transport properties
title Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attaining%20reduced%20lattice%20thermal%20conductivity%20and%20enhanced%20electrical%20conductivity%20in%20as-sintered%20pure%20n-type%20Bi2Te3%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Xiao-yu&rft.date=2019-03-01&rft.volume=54&rft.issue=6&rft.spage=4788&rft.epage=4797&rft.pages=4788-4797&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-3172-9&rft_dat=%3Cproquest_cross%3E2259636484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259636484&rft_id=info:pmid/&rfr_iscdi=true