Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy
Undoped n -type Bi 2 Te 3 bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-03, Vol.54 (6), p.4788-4797 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4797 |
---|---|
container_issue | 6 |
container_start_page | 4788 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Wang, Xiao-yu Wang, Hui-juan Xiang, Bo Shang, Hong-jing Zhu, Bin Yu, Yuan Jin, Hui Zhao, Run-fei Huang, Zhong-yue Liu, Lan-jun Zu, Fang-qiu Chen, Zhi-gang |
description | Undoped
n
-type Bi
2
Te
3
bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m
−1
K
−1
(decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently,
zT
max
~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast. |
doi_str_mv | 10.1007/s10853-018-3172-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259636484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259636484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jkYze7x1r8goKXeg7pZrZN2WZrkhWKf94tFQTB0xzmed9hHkJuONxxAH2fOFSFZMArJrkWrD4hE15oyVQF8pRMAIRgQpX8nFyktAGAQgs-IV_TnK0PPqxoRDc06Ghnc_YN0rzGuLUdbfowLrL_9HlPbXAUw9qGA4kdNjn65i_kA7WJJR8yjqV0N0SkgeX9DumDFwuU1HZdv78iZ63tEl7_zEvy_vS4mL2w-dvz62w6Z42sRGb1cim1Kl1VtKoqNJeoEaxWjrtCuMNjjRRi6crW6XZZgwJV123JhYDSWgfyktwee3ex_xgwZbPphxjGk0aIoi5lqSo1UvxINbFPKWJrdtFvbdwbDubg2Bwdm9GxOTg29ZgRx0wa2bDC-Nv8f-gby3V_-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259636484</pqid></control><display><type>article</type><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</creator><creatorcontrib>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</creatorcontrib><description>Undoped
n
-type Bi
2
Te
3
bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m
−1
K
−1
(decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently,
zT
max
~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-3172-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ball milling ; Bismuth tellurides ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dislocations ; Electrical resistivity ; Electronic Materials ; Heat conductivity ; Heat transfer ; Materials Science ; Plasma sintering ; Polymer Sciences ; Solid Mechanics ; Spark plasma sintering ; Thermal conductivity ; Transport properties</subject><ispartof>Journal of materials science, 2019-03, Vol.54 (6), p.4788-4797</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</citedby><cites>FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</cites><orcidid>0000-0001-8275-1171 ; 0000-0002-5959-3731 ; 0000-0002-4877-393X ; 0000-0002-7928-5568 ; 0000-0002-3148-6600 ; 0000-0003-1857-6529 ; 0000-0001-8352-144X ; 0000-0002-3379-1668 ; 0000-0001-7891-9082 ; 0000-0002-9309-7993 ; 0000-0001-8231-3681 ; 0000-0003-4952-6225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-3172-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-3172-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Xiao-yu</creatorcontrib><creatorcontrib>Wang, Hui-juan</creatorcontrib><creatorcontrib>Xiang, Bo</creatorcontrib><creatorcontrib>Shang, Hong-jing</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Jin, Hui</creatorcontrib><creatorcontrib>Zhao, Run-fei</creatorcontrib><creatorcontrib>Huang, Zhong-yue</creatorcontrib><creatorcontrib>Liu, Lan-jun</creatorcontrib><creatorcontrib>Zu, Fang-qiu</creatorcontrib><creatorcontrib>Chen, Zhi-gang</creatorcontrib><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Undoped
n
-type Bi
2
Te
3
bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m
−1
K
−1
(decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently,
zT
max
~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</description><subject>Ball milling</subject><subject>Bismuth tellurides</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dislocations</subject><subject>Electrical resistivity</subject><subject>Electronic Materials</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Plasma sintering</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jkYze7x1r8goKXeg7pZrZN2WZrkhWKf94tFQTB0xzmed9hHkJuONxxAH2fOFSFZMArJrkWrD4hE15oyVQF8pRMAIRgQpX8nFyktAGAQgs-IV_TnK0PPqxoRDc06Ghnc_YN0rzGuLUdbfowLrL_9HlPbXAUw9qGA4kdNjn65i_kA7WJJR8yjqV0N0SkgeX9DumDFwuU1HZdv78iZ63tEl7_zEvy_vS4mL2w-dvz62w6Z42sRGb1cim1Kl1VtKoqNJeoEaxWjrtCuMNjjRRi6crW6XZZgwJV123JhYDSWgfyktwee3ex_xgwZbPphxjGk0aIoi5lqSo1UvxINbFPKWJrdtFvbdwbDubg2Bwdm9GxOTg29ZgRx0wa2bDC-Nv8f-gby3V_-Q</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Wang, Xiao-yu</creator><creator>Wang, Hui-juan</creator><creator>Xiang, Bo</creator><creator>Shang, Hong-jing</creator><creator>Zhu, Bin</creator><creator>Yu, Yuan</creator><creator>Jin, Hui</creator><creator>Zhao, Run-fei</creator><creator>Huang, Zhong-yue</creator><creator>Liu, Lan-jun</creator><creator>Zu, Fang-qiu</creator><creator>Chen, Zhi-gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8275-1171</orcidid><orcidid>https://orcid.org/0000-0002-5959-3731</orcidid><orcidid>https://orcid.org/0000-0002-4877-393X</orcidid><orcidid>https://orcid.org/0000-0002-7928-5568</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-1857-6529</orcidid><orcidid>https://orcid.org/0000-0001-8352-144X</orcidid><orcidid>https://orcid.org/0000-0002-3379-1668</orcidid><orcidid>https://orcid.org/0000-0001-7891-9082</orcidid><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0001-8231-3681</orcidid><orcidid>https://orcid.org/0000-0003-4952-6225</orcidid></search><sort><creationdate>20190301</creationdate><title>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</title><author>Wang, Xiao-yu ; Wang, Hui-juan ; Xiang, Bo ; Shang, Hong-jing ; Zhu, Bin ; Yu, Yuan ; Jin, Hui ; Zhao, Run-fei ; Huang, Zhong-yue ; Liu, Lan-jun ; Zu, Fang-qiu ; Chen, Zhi-gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-9bb3746d85f485713e7e0a74d1d52d0022c322bd6fd7fb9040499f612206aad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ball milling</topic><topic>Bismuth tellurides</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dislocations</topic><topic>Electrical resistivity</topic><topic>Electronic Materials</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Plasma sintering</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiao-yu</creatorcontrib><creatorcontrib>Wang, Hui-juan</creatorcontrib><creatorcontrib>Xiang, Bo</creatorcontrib><creatorcontrib>Shang, Hong-jing</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Yu, Yuan</creatorcontrib><creatorcontrib>Jin, Hui</creatorcontrib><creatorcontrib>Zhao, Run-fei</creatorcontrib><creatorcontrib>Huang, Zhong-yue</creatorcontrib><creatorcontrib>Liu, Lan-jun</creatorcontrib><creatorcontrib>Zu, Fang-qiu</creatorcontrib><creatorcontrib>Chen, Zhi-gang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiao-yu</au><au>Wang, Hui-juan</au><au>Xiang, Bo</au><au>Shang, Hong-jing</au><au>Zhu, Bin</au><au>Yu, Yuan</au><au>Jin, Hui</au><au>Zhao, Run-fei</au><au>Huang, Zhong-yue</au><au>Liu, Lan-jun</au><au>Zu, Fang-qiu</au><au>Chen, Zhi-gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>54</volume><issue>6</issue><spage>4788</spage><epage>4797</epage><pages>4788-4797</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Undoped
n
-type Bi
2
Te
3
bulks were prepared via the liquid state manipulation (LSM) with subsequent ball milling and spark plasma sintering processes. The sample with LSM obtains higher carrier concentration and larger effective mass compared with that without LSM, exhibiting favourable electrical transport properties. More importantly, a much reduced lattice thermal conductivity ~ 0.47 W m
−1
K
−1
(decreased by 43%) is obtained, due to the enhanced multiscale phonon scattering from hierarchical microstructures, including boundaries, nanograins and lattice dislocations. Additionally, due to the increased carrier concentration and enlarged band gap, the bipolar effect is effectively suppressed in sample BT-LSM. Consequently,
zT
max
~ 0.66 is achieved in the sample with LSM at higher temperature of 475 K, almost 22% improvement compared with that of the contrast.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-3172-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8275-1171</orcidid><orcidid>https://orcid.org/0000-0002-5959-3731</orcidid><orcidid>https://orcid.org/0000-0002-4877-393X</orcidid><orcidid>https://orcid.org/0000-0002-7928-5568</orcidid><orcidid>https://orcid.org/0000-0002-3148-6600</orcidid><orcidid>https://orcid.org/0000-0003-1857-6529</orcidid><orcidid>https://orcid.org/0000-0001-8352-144X</orcidid><orcidid>https://orcid.org/0000-0002-3379-1668</orcidid><orcidid>https://orcid.org/0000-0001-7891-9082</orcidid><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid><orcidid>https://orcid.org/0000-0001-8231-3681</orcidid><orcidid>https://orcid.org/0000-0003-4952-6225</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-03, Vol.54 (6), p.4788-4797 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259636484 |
source | Springer Nature - Complete Springer Journals |
subjects | Ball milling Bismuth tellurides Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Dislocations Electrical resistivity Electronic Materials Heat conductivity Heat transfer Materials Science Plasma sintering Polymer Sciences Solid Mechanics Spark plasma sintering Thermal conductivity Transport properties |
title | Attaining reduced lattice thermal conductivity and enhanced electrical conductivity in as-sintered pure n-type Bi2Te3 alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attaining%20reduced%20lattice%20thermal%20conductivity%20and%20enhanced%20electrical%20conductivity%20in%20as-sintered%20pure%20n-type%20Bi2Te3%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Xiao-yu&rft.date=2019-03-01&rft.volume=54&rft.issue=6&rft.spage=4788&rft.epage=4797&rft.pages=4788-4797&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-3172-9&rft_dat=%3Cproquest_cross%3E2259636484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259636484&rft_id=info:pmid/&rfr_iscdi=true |