Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test

In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2012-02, Vol.30 (1), p.129-143
Hauptverfasser: Ajorloo, A. M., Mroueh, H., Lancelot, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 129
container_title Geotechnical and geological engineering
container_volume 30
creator Ajorloo, A. M.
Mroueh, H.
Lancelot, L.
description In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c ′ and φ p ′, are relevant to the binder content.
doi_str_mv 10.1007/s10706-011-9455-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259631886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259631886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-d60cedda48f6ea3fd71b26ebea44a6f5c4b826bffc9f989779770e00314d6aea3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAc3SSzWY3Ry21FooebM8hu5nULXW3JttS_70pK3gSBubw3jePeYTccrjnAMVD5FCAYsA50zLPmTwjI54XGeO50OdkBFoBy3gpLslVjBsAEAr4iLxOjzsMzSe2vd3SeXvA2Ddr2zddSztPJ3hS6DKg7dHRd9s6-oQf9tB0ga5ahyFpjT02CV4m9JpceLuNePO7x2T1PF1OXtjibTafPC6YzTLdM6egRuesLL1Cm3lX8EoorNBKaZXPa1mVQlXe19rrUhdFGkCAjEunbCLG5G64uwvd1z4Fm023D22KNELkWqVPS5VcfHDVoYsxoDe79KoN34aDOdVmhtpMqs2cajMyMWJgYvK2awx_l_-HfgB8gHB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259631886</pqid></control><display><type>article</type><title>Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test</title><source>Springer Nature - Complete Springer Journals</source><creator>Ajorloo, A. M. ; Mroueh, H. ; Lancelot, L.</creator><creatorcontrib>Ajorloo, A. M. ; Mroueh, H. ; Lancelot, L.</creatorcontrib><description>In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c ′ and φ p ′, are relevant to the binder content.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-011-9455-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Cement ; Cementation ; Civil Engineering ; Concrete ; Confining ; Dilatancy ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Original Paper ; Pressure ; Sand ; Shear strength ; Stiffness ; Strain ; Terrestrial Pollution ; Triaxial tests ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2012-02, Vol.30 (1), p.129-143</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>Geotechnical and Geological Engineering is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-d60cedda48f6ea3fd71b26ebea44a6f5c4b826bffc9f989779770e00314d6aea3</citedby><cites>FETCH-LOGICAL-a339t-d60cedda48f6ea3fd71b26ebea44a6f5c4b826bffc9f989779770e00314d6aea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-011-9455-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-011-9455-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ajorloo, A. M.</creatorcontrib><creatorcontrib>Mroueh, H.</creatorcontrib><creatorcontrib>Lancelot, L.</creatorcontrib><title>Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c ′ and φ p ′, are relevant to the binder content.</description><subject>Cement</subject><subject>Cementation</subject><subject>Civil Engineering</subject><subject>Concrete</subject><subject>Confining</subject><subject>Dilatancy</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Original Paper</subject><subject>Pressure</subject><subject>Sand</subject><subject>Shear strength</subject><subject>Stiffness</subject><subject>Strain</subject><subject>Terrestrial Pollution</subject><subject>Triaxial tests</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAc3SSzWY3Ry21FooebM8hu5nULXW3JttS_70pK3gSBubw3jePeYTccrjnAMVD5FCAYsA50zLPmTwjI54XGeO50OdkBFoBy3gpLslVjBsAEAr4iLxOjzsMzSe2vd3SeXvA2Ddr2zddSztPJ3hS6DKg7dHRd9s6-oQf9tB0ga5ahyFpjT02CV4m9JpceLuNePO7x2T1PF1OXtjibTafPC6YzTLdM6egRuesLL1Cm3lX8EoorNBKaZXPa1mVQlXe19rrUhdFGkCAjEunbCLG5G64uwvd1z4Fm023D22KNELkWqVPS5VcfHDVoYsxoDe79KoN34aDOdVmhtpMqs2cajMyMWJgYvK2awx_l_-HfgB8gHB_</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Ajorloo, A. M.</creator><creator>Mroueh, H.</creator><creator>Lancelot, L.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20120201</creationdate><title>Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test</title><author>Ajorloo, A. M. ; Mroueh, H. ; Lancelot, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-d60cedda48f6ea3fd71b26ebea44a6f5c4b826bffc9f989779770e00314d6aea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cement</topic><topic>Cementation</topic><topic>Civil Engineering</topic><topic>Concrete</topic><topic>Confining</topic><topic>Dilatancy</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Original Paper</topic><topic>Pressure</topic><topic>Sand</topic><topic>Shear strength</topic><topic>Stiffness</topic><topic>Strain</topic><topic>Terrestrial Pollution</topic><topic>Triaxial tests</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajorloo, A. M.</creatorcontrib><creatorcontrib>Mroueh, H.</creatorcontrib><creatorcontrib>Lancelot, L.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajorloo, A. M.</au><au>Mroueh, H.</au><au>Lancelot, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>30</volume><issue>1</issue><spage>129</spage><epage>143</epage><pages>129-143</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c ′ and φ p ′, are relevant to the binder content.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10706-011-9455-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2012-02, Vol.30 (1), p.129-143
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_2259631886
source Springer Nature - Complete Springer Journals
subjects Cement
Cementation
Civil Engineering
Concrete
Confining
Dilatancy
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Original Paper
Pressure
Sand
Shear strength
Stiffness
Strain
Terrestrial Pollution
Triaxial tests
Waste Management/Waste Technology
title Experimental Investigation of Cement Treated Sand Behavior Under Triaxial Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20of%20Cement%20Treated%20Sand%20Behavior%20Under%20Triaxial%20Test&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Ajorloo,%20A.%20M.&rft.date=2012-02-01&rft.volume=30&rft.issue=1&rft.spage=129&rft.epage=143&rft.pages=129-143&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-011-9455-4&rft_dat=%3Cproquest_cross%3E2259631886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259631886&rft_id=info:pmid/&rfr_iscdi=true