Hot channels engineer enhanced water transport

Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-12, Vol.52 (23), p.13504-13511
Hauptverfasser: Su, Jiaye, Zhao, Yunzhen, Fang, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13511
container_issue 23
container_start_page 13504
container_title Journal of materials science
container_volume 52
creator Su, Jiaye
Zhao, Yunzhen
Fang, Chang
description Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase in channel temperature, the water flow exhibits a remarkable maximum behavior, corresponding to the decrease in water occupancy. The maximum flow is clearly caused by the channel vibration at high temperatures that leads to the breakdown of single-file water chain, suggesting a new mechanism for fast water conduction. Furthermore, with the increase in channel temperature, the water translocation time decreases monotonously and the flipping frequency of water dipole orientation increases as a whole. The distributions of occupancy, hydrogen bond number, dipole angle and axial density profiles also demonstrate unique behaviors and suggest the breakdown of single-file water chain. Our results provide a significant new method to breakdown the collective motion of single-file water chain and achieve the fast water transport, which is helpful for the design of high-flux nanofluidic devices.
doi_str_mv 10.1007/s10853-017-1442-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259625571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A504388589</galeid><sourcerecordid>A504388589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-86fbf91998cd423a2a3ce24f44db2cf7119a8f508ab4f4a9b7fecb885e8366a03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBk4fUfO4mx1LUFgqCH-eQzU7WLW22JlvUf2_KCtKDzCGTl-edGV6ErimZUkLKu0SJkhwTWmIqBMPFCRpRWXIsFOGnaEQIY5iJgp6ji5TWhBBZMjpC00XXT9y7DQE2aQKhaQNAzE2WHNSTT9vnbx9tSLsu9pfozNtNgqvfd4zeHu5f5wu8enpczmcr7LjSPVaFr7ymWitXC8Yts9wBE16IumLOl5Rqq7wkylZZtLoqPbhKKQmKF4UlfIxuhrm72H3sIfVm3e1jyCsNY1IXTMqSZmo6UI3dgGmD7_KhLlcN29Z1AXyb9ZkkgufZSmfD7ZEhMz189Y3dp2SWL8_HLB1YF7uUInizi-3Wxm9DiTlkbobMTc7cHDI3RfawwZMyGxqIf2f_b_oBY_CCFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259625571</pqid></control><display><type>article</type><title>Hot channels engineer enhanced water transport</title><source>Springer Online Journals【Remote access available】</source><creator>Su, Jiaye ; Zhao, Yunzhen ; Fang, Chang</creator><creatorcontrib>Su, Jiaye ; Zhao, Yunzhen ; Fang, Chang</creatorcontrib><description>Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase in channel temperature, the water flow exhibits a remarkable maximum behavior, corresponding to the decrease in water occupancy. The maximum flow is clearly caused by the channel vibration at high temperatures that leads to the breakdown of single-file water chain, suggesting a new mechanism for fast water conduction. Furthermore, with the increase in channel temperature, the water translocation time decreases monotonously and the flipping frequency of water dipole orientation increases as a whole. The distributions of occupancy, hydrogen bond number, dipole angle and axial density profiles also demonstrate unique behaviors and suggest the breakdown of single-file water chain. Our results provide a significant new method to breakdown the collective motion of single-file water chain and achieve the fast water transport, which is helpful for the design of high-flux nanofluidic devices.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1442-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bond number ; Breakdown ; Carbon nanotubes ; Chains ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computation ; Crystallography and Scattering Methods ; Dipoles ; Engineers ; Fluidics ; Hydraulic flow ; Hydrogen ; Hydrogen bonds ; Materials Science ; Molecular dynamics ; Nanofluids ; Nanotubes ; Occupancy ; Polymer Sciences ; Solid Mechanics ; Transport ; Water ; Water chemistry ; Water flow</subject><ispartof>Journal of materials science, 2017-12, Vol.52 (23), p.13504-13511</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-86fbf91998cd423a2a3ce24f44db2cf7119a8f508ab4f4a9b7fecb885e8366a03</citedby><cites>FETCH-LOGICAL-c389t-86fbf91998cd423a2a3ce24f44db2cf7119a8f508ab4f4a9b7fecb885e8366a03</cites><orcidid>0000-0001-9894-578X ; 0000-0002-3793-9359 ; 0000-0002-0349-7257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1442-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1442-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Su, Jiaye</creatorcontrib><creatorcontrib>Zhao, Yunzhen</creatorcontrib><creatorcontrib>Fang, Chang</creatorcontrib><title>Hot channels engineer enhanced water transport</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase in channel temperature, the water flow exhibits a remarkable maximum behavior, corresponding to the decrease in water occupancy. The maximum flow is clearly caused by the channel vibration at high temperatures that leads to the breakdown of single-file water chain, suggesting a new mechanism for fast water conduction. Furthermore, with the increase in channel temperature, the water translocation time decreases monotonously and the flipping frequency of water dipole orientation increases as a whole. The distributions of occupancy, hydrogen bond number, dipole angle and axial density profiles also demonstrate unique behaviors and suggest the breakdown of single-file water chain. Our results provide a significant new method to breakdown the collective motion of single-file water chain and achieve the fast water transport, which is helpful for the design of high-flux nanofluidic devices.</description><subject>Bond number</subject><subject>Breakdown</subject><subject>Carbon nanotubes</subject><subject>Chains</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computation</subject><subject>Crystallography and Scattering Methods</subject><subject>Dipoles</subject><subject>Engineers</subject><subject>Fluidics</subject><subject>Hydraulic flow</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanofluids</subject><subject>Nanotubes</subject><subject>Occupancy</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Transport</subject><subject>Water</subject><subject>Water chemistry</subject><subject>Water flow</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvBk4fUfO4mx1LUFgqCH-eQzU7WLW22JlvUf2_KCtKDzCGTl-edGV6ErimZUkLKu0SJkhwTWmIqBMPFCRpRWXIsFOGnaEQIY5iJgp6ji5TWhBBZMjpC00XXT9y7DQE2aQKhaQNAzE2WHNSTT9vnbx9tSLsu9pfozNtNgqvfd4zeHu5f5wu8enpczmcr7LjSPVaFr7ymWitXC8Yts9wBE16IumLOl5Rqq7wkylZZtLoqPbhKKQmKF4UlfIxuhrm72H3sIfVm3e1jyCsNY1IXTMqSZmo6UI3dgGmD7_KhLlcN29Z1AXyb9ZkkgufZSmfD7ZEhMz189Y3dp2SWL8_HLB1YF7uUInizi-3Wxm9DiTlkbobMTc7cHDI3RfawwZMyGxqIf2f_b_oBY_CCFA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Su, Jiaye</creator><creator>Zhao, Yunzhen</creator><creator>Fang, Chang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9894-578X</orcidid><orcidid>https://orcid.org/0000-0002-3793-9359</orcidid><orcidid>https://orcid.org/0000-0002-0349-7257</orcidid></search><sort><creationdate>20171201</creationdate><title>Hot channels engineer enhanced water transport</title><author>Su, Jiaye ; Zhao, Yunzhen ; Fang, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-86fbf91998cd423a2a3ce24f44db2cf7119a8f508ab4f4a9b7fecb885e8366a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bond number</topic><topic>Breakdown</topic><topic>Carbon nanotubes</topic><topic>Chains</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computation</topic><topic>Crystallography and Scattering Methods</topic><topic>Dipoles</topic><topic>Engineers</topic><topic>Fluidics</topic><topic>Hydraulic flow</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanofluids</topic><topic>Nanotubes</topic><topic>Occupancy</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Transport</topic><topic>Water</topic><topic>Water chemistry</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jiaye</creatorcontrib><creatorcontrib>Zhao, Yunzhen</creatorcontrib><creatorcontrib>Fang, Chang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jiaye</au><au>Zhao, Yunzhen</au><au>Fang, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot channels engineer enhanced water transport</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>52</volume><issue>23</issue><spage>13504</spage><epage>13511</epage><pages>13504-13511</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase in channel temperature, the water flow exhibits a remarkable maximum behavior, corresponding to the decrease in water occupancy. The maximum flow is clearly caused by the channel vibration at high temperatures that leads to the breakdown of single-file water chain, suggesting a new mechanism for fast water conduction. Furthermore, with the increase in channel temperature, the water translocation time decreases monotonously and the flipping frequency of water dipole orientation increases as a whole. The distributions of occupancy, hydrogen bond number, dipole angle and axial density profiles also demonstrate unique behaviors and suggest the breakdown of single-file water chain. Our results provide a significant new method to breakdown the collective motion of single-file water chain and achieve the fast water transport, which is helpful for the design of high-flux nanofluidic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1442-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9894-578X</orcidid><orcidid>https://orcid.org/0000-0002-3793-9359</orcidid><orcidid>https://orcid.org/0000-0002-0349-7257</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-12, Vol.52 (23), p.13504-13511
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259625571
source Springer Online Journals【Remote access available】
subjects Bond number
Breakdown
Carbon nanotubes
Chains
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computation
Crystallography and Scattering Methods
Dipoles
Engineers
Fluidics
Hydraulic flow
Hydrogen
Hydrogen bonds
Materials Science
Molecular dynamics
Nanofluids
Nanotubes
Occupancy
Polymer Sciences
Solid Mechanics
Transport
Water
Water chemistry
Water flow
title Hot channels engineer enhanced water transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20channels%20engineer%20enhanced%20water%20transport&rft.jtitle=Journal%20of%20materials%20science&rft.au=Su,%20Jiaye&rft.date=2017-12-01&rft.volume=52&rft.issue=23&rft.spage=13504&rft.epage=13511&rft.pages=13504-13511&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1442-6&rft_dat=%3Cgale_proqu%3EA504388589%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259625571&rft_id=info:pmid/&rft_galeid=A504388589&rfr_iscdi=true