Hot channels engineer enhanced water transport
Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase i...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2017-12, Vol.52 (23), p.13504-13511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing the high-flux nanofluidic devices is still a challenge. In this work, we show by molecular dynamics simulations that the permeation of single-file water molecules through a carbon nanotube (CNT) can be significantly enhanced by means of heating up the CNT. Specifically, with the increase in channel temperature, the water flow exhibits a remarkable maximum behavior, corresponding to the decrease in water occupancy. The maximum flow is clearly caused by the channel vibration at high temperatures that leads to the breakdown of single-file water chain, suggesting a new mechanism for fast water conduction. Furthermore, with the increase in channel temperature, the water translocation time decreases monotonously and the flipping frequency of water dipole orientation increases as a whole. The distributions of occupancy, hydrogen bond number, dipole angle and axial density profiles also demonstrate unique behaviors and suggest the breakdown of single-file water chain. Our results provide a significant new method to breakdown the collective motion of single-file water chain and achieve the fast water transport, which is helpful for the design of high-flux nanofluidic devices. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-017-1442-6 |