Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors

Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-02, Vol.52 (3), p.1477-1485
Hauptverfasser: Zhang, Chunchen, Guo, Chunli, Li, Taotao, Ren, Xiaochuan, Mao, Yuqiong, Wei, Yinghui, Hou, Lifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1485
container_issue 3
container_start_page 1477
container_title Journal of materials science
container_volume 52
creator Zhang, Chunchen
Guo, Chunli
Li, Taotao
Ren, Xiaochuan
Mao, Yuqiong
Wei, Yinghui
Hou, Lifeng
description Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped MnCO 3 microspheres exhibited a higher specific capacity (538 F g −1 at a current density of 1 A g −1 ) than pure MnCO 3 (287 F g −1 ). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g −1 , demonstrating a good cycling performance. These results suggested that Ni-doped MnCO 3 microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.
doi_str_mv 10.1007/s10853-016-0443-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259624164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259624164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EEmX4AHaWWAf8PGRgh8ooFbqBteW4z22qJg52Curf4yogVqze4p5zn3QJuQB2BYwV1xFYqUTGIM-YlCKDAzIBVYhMlkwckgljnGdc5nBMTmJcM8ZUwWFCvu5833RL-trcUNNRdA7t0HwijUMwAy53FLuV6eyewU3KgrcrbBtrNrTH4HxoU4rUO_rSTefiF1ogbZMfGrOJNFE0bhNuTW9sM_gQz8iRSxGe_9xT8v5w_zZ9ymbzx-fp7SyzQhVDlktT11A7aVQuKoaFqK21C462trkAI1VVFlJJC1XNSucMl6YCyVFVkHNlxSm5HHv74D-2GAe99tvQpZeac1XlXEIuEwUjZYOPMaDTfWhaE3YamN7vq8d9ddpX7_fVkBw-OjGx3RLDX_P_0je9p38t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259624164</pqid></control><display><type>article</type><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><source>SpringerLink_现刊</source><creator>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</creator><creatorcontrib>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</creatorcontrib><description>Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped MnCO 3 microspheres exhibited a higher specific capacity (538 F g −1 at a current density of 1 A g −1 ) than pure MnCO 3 (287 F g −1 ). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g −1 , demonstrating a good cycling performance. These results suggested that Ni-doped MnCO 3 microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0443-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Current density ; Doping ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Materials Science ; Microscopy ; Microspheres ; Nickel ; Original Paper ; Polymer Sciences ; Scanning electron microscopy ; Solid Mechanics ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2017-02, Vol.52 (3), p.1477-1485</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</citedby><cites>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-0443-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-0443-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Chunchen</creatorcontrib><creatorcontrib>Guo, Chunli</creatorcontrib><creatorcontrib>Li, Taotao</creatorcontrib><creatorcontrib>Ren, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Yuqiong</creatorcontrib><creatorcontrib>Wei, Yinghui</creatorcontrib><creatorcontrib>Hou, Lifeng</creatorcontrib><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped MnCO 3 microspheres exhibited a higher specific capacity (538 F g −1 at a current density of 1 A g −1 ) than pure MnCO 3 (287 F g −1 ). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g −1 , demonstrating a good cycling performance. These results suggested that Ni-doped MnCO 3 microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Current density</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Microspheres</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMlOwzAURS0EEmX4AHaWWAf8PGRgh8ooFbqBteW4z22qJg52Curf4yogVqze4p5zn3QJuQB2BYwV1xFYqUTGIM-YlCKDAzIBVYhMlkwckgljnGdc5nBMTmJcM8ZUwWFCvu5833RL-trcUNNRdA7t0HwijUMwAy53FLuV6eyewU3KgrcrbBtrNrTH4HxoU4rUO_rSTefiF1ogbZMfGrOJNFE0bhNuTW9sM_gQz8iRSxGe_9xT8v5w_zZ9ymbzx-fp7SyzQhVDlktT11A7aVQuKoaFqK21C462trkAI1VVFlJJC1XNSucMl6YCyVFVkHNlxSm5HHv74D-2GAe99tvQpZeac1XlXEIuEwUjZYOPMaDTfWhaE3YamN7vq8d9ddpX7_fVkBw-OjGx3RLDX_P_0je9p38t</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Zhang, Chunchen</creator><creator>Guo, Chunli</creator><creator>Li, Taotao</creator><creator>Ren, Xiaochuan</creator><creator>Mao, Yuqiong</creator><creator>Wei, Yinghui</creator><creator>Hou, Lifeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><author>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Current density</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Microspheres</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunchen</creatorcontrib><creatorcontrib>Guo, Chunli</creatorcontrib><creatorcontrib>Li, Taotao</creatorcontrib><creatorcontrib>Ren, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Yuqiong</creatorcontrib><creatorcontrib>Wei, Yinghui</creatorcontrib><creatorcontrib>Hou, Lifeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunchen</au><au>Guo, Chunli</au><au>Li, Taotao</au><au>Ren, Xiaochuan</au><au>Mao, Yuqiong</au><au>Wei, Yinghui</au><au>Hou, Lifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>52</volume><issue>3</issue><spage>1477</spage><epage>1485</epage><pages>1477-1485</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped MnCO 3 microspheres exhibited a higher specific capacity (538 F g −1 at a current density of 1 A g −1 ) than pure MnCO 3 (287 F g −1 ). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g −1 , demonstrating a good cycling performance. These results suggested that Ni-doped MnCO 3 microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0443-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-02, Vol.52 (3), p.1477-1485
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259624164
source SpringerLink_现刊
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Current density
Doping
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Materials Science
Microscopy
Microspheres
Nickel
Original Paper
Polymer Sciences
Scanning electron microscopy
Solid Mechanics
Transmission electron microscopy
X-ray diffraction
title Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20Ni:%20an%20effective%20strategy%20enhancing%20electrochemical%20performance%20of%20MnCO3%20electrode%20materials%20for%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20Chunchen&rft.date=2017-02-01&rft.volume=52&rft.issue=3&rft.spage=1477&rft.epage=1485&rft.pages=1477-1485&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0443-1&rft_dat=%3Cproquest_cross%3E2259624164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259624164&rft_id=info:pmid/&rfr_iscdi=true