Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors
Ni-doped MnCO 3 microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N 2 adsorption–desorption measurements. The fabricated Ni-doped...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2017-02, Vol.52 (3), p.1477-1485 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1485 |
---|---|
container_issue | 3 |
container_start_page | 1477 |
container_title | Journal of materials science |
container_volume | 52 |
creator | Zhang, Chunchen Guo, Chunli Li, Taotao Ren, Xiaochuan Mao, Yuqiong Wei, Yinghui Hou, Lifeng |
description | Ni-doped MnCO
3
microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N
2
adsorption–desorption measurements. The fabricated Ni-doped MnCO
3
microspheres exhibited a higher specific capacity (538 F g
−1
at a current density of 1 A g
−1
) than pure MnCO
3
(287 F g
−1
). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g
−1
, demonstrating a good cycling performance. These results suggested that Ni-doped MnCO
3
microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials. |
doi_str_mv | 10.1007/s10853-016-0443-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259624164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259624164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</originalsourceid><addsrcrecordid>eNp1kMlOwzAURS0EEmX4AHaWWAf8PGRgh8ooFbqBteW4z22qJg52Curf4yogVqze4p5zn3QJuQB2BYwV1xFYqUTGIM-YlCKDAzIBVYhMlkwckgljnGdc5nBMTmJcM8ZUwWFCvu5833RL-trcUNNRdA7t0HwijUMwAy53FLuV6eyewU3KgrcrbBtrNrTH4HxoU4rUO_rSTefiF1ogbZMfGrOJNFE0bhNuTW9sM_gQz8iRSxGe_9xT8v5w_zZ9ymbzx-fp7SyzQhVDlktT11A7aVQuKoaFqK21C462trkAI1VVFlJJC1XNSucMl6YCyVFVkHNlxSm5HHv74D-2GAe99tvQpZeac1XlXEIuEwUjZYOPMaDTfWhaE3YamN7vq8d9ddpX7_fVkBw-OjGx3RLDX_P_0je9p38t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259624164</pqid></control><display><type>article</type><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><source>SpringerLink_现刊</source><creator>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</creator><creatorcontrib>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</creatorcontrib><description>Ni-doped MnCO
3
microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N
2
adsorption–desorption measurements. The fabricated Ni-doped MnCO
3
microspheres exhibited a higher specific capacity (538 F g
−1
at a current density of 1 A g
−1
) than pure MnCO
3
(287 F g
−1
). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g
−1
, demonstrating a good cycling performance. These results suggested that Ni-doped MnCO
3
microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0443-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Current density ; Doping ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Materials Science ; Microscopy ; Microspheres ; Nickel ; Original Paper ; Polymer Sciences ; Scanning electron microscopy ; Solid Mechanics ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of materials science, 2017-02, Vol.52 (3), p.1477-1485</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</citedby><cites>FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-0443-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-0443-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Chunchen</creatorcontrib><creatorcontrib>Guo, Chunli</creatorcontrib><creatorcontrib>Li, Taotao</creatorcontrib><creatorcontrib>Ren, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Yuqiong</creatorcontrib><creatorcontrib>Wei, Yinghui</creatorcontrib><creatorcontrib>Hou, Lifeng</creatorcontrib><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Ni-doped MnCO
3
microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N
2
adsorption–desorption measurements. The fabricated Ni-doped MnCO
3
microspheres exhibited a higher specific capacity (538 F g
−1
at a current density of 1 A g
−1
) than pure MnCO
3
(287 F g
−1
). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g
−1
, demonstrating a good cycling performance. These results suggested that Ni-doped MnCO
3
microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Current density</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Microspheres</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Scanning electron microscopy</subject><subject>Solid Mechanics</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMlOwzAURS0EEmX4AHaWWAf8PGRgh8ooFbqBteW4z22qJg52Curf4yogVqze4p5zn3QJuQB2BYwV1xFYqUTGIM-YlCKDAzIBVYhMlkwckgljnGdc5nBMTmJcM8ZUwWFCvu5833RL-trcUNNRdA7t0HwijUMwAy53FLuV6eyewU3KgrcrbBtrNrTH4HxoU4rUO_rSTefiF1ogbZMfGrOJNFE0bhNuTW9sM_gQz8iRSxGe_9xT8v5w_zZ9ymbzx-fp7SyzQhVDlktT11A7aVQuKoaFqK21C462trkAI1VVFlJJC1XNSucMl6YCyVFVkHNlxSm5HHv74D-2GAe99tvQpZeac1XlXEIuEwUjZYOPMaDTfWhaE3YamN7vq8d9ddpX7_fVkBw-OjGx3RLDX_P_0je9p38t</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Zhang, Chunchen</creator><creator>Guo, Chunli</creator><creator>Li, Taotao</creator><creator>Ren, Xiaochuan</creator><creator>Mao, Yuqiong</creator><creator>Wei, Yinghui</creator><creator>Hou, Lifeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170201</creationdate><title>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</title><author>Zhang, Chunchen ; Guo, Chunli ; Li, Taotao ; Ren, Xiaochuan ; Mao, Yuqiong ; Wei, Yinghui ; Hou, Lifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-64abb1bf4a56390e73bcccd2ecbc631a45987454c19b08ffa24a9142e591625c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Current density</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Microspheres</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Scanning electron microscopy</topic><topic>Solid Mechanics</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunchen</creatorcontrib><creatorcontrib>Guo, Chunli</creatorcontrib><creatorcontrib>Li, Taotao</creatorcontrib><creatorcontrib>Ren, Xiaochuan</creatorcontrib><creatorcontrib>Mao, Yuqiong</creatorcontrib><creatorcontrib>Wei, Yinghui</creatorcontrib><creatorcontrib>Hou, Lifeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunchen</au><au>Guo, Chunli</au><au>Li, Taotao</au><au>Ren, Xiaochuan</au><au>Mao, Yuqiong</au><au>Wei, Yinghui</au><au>Hou, Lifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>52</volume><issue>3</issue><spage>1477</spage><epage>1485</epage><pages>1477-1485</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Ni-doped MnCO
3
microspheres were successfully synthesized via a one-step mixed solvent-thermal method. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and N
2
adsorption–desorption measurements. The fabricated Ni-doped MnCO
3
microspheres exhibited a higher specific capacity (538 F g
−1
at a current density of 1 A g
−1
) than pure MnCO
3
(287 F g
−1
). In addition, 85.8 % of initial capacity was retained after 3000 cycles at a current density of 5 A g
−1
, demonstrating a good cycling performance. These results suggested that Ni-doped MnCO
3
microspheres material was a promising candidate for high energy storage applications. Hence doping heterogeneous element with good electrical conductivity was an effective approach to improve the electrochemical performance of the electrode materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0443-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2017-02, Vol.52 (3), p.1477-1485 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259624164 |
source | SpringerLink_现刊 |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Current density Doping Electrical resistivity Electrochemical analysis Electrode materials Electrodes Energy storage Materials Science Microscopy Microspheres Nickel Original Paper Polymer Sciences Scanning electron microscopy Solid Mechanics Transmission electron microscopy X-ray diffraction |
title | Doping Ni: an effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20Ni:%20an%20effective%20strategy%20enhancing%20electrochemical%20performance%20of%20MnCO3%20electrode%20materials%20for%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20Chunchen&rft.date=2017-02-01&rft.volume=52&rft.issue=3&rft.spage=1477&rft.epage=1485&rft.pages=1477-1485&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0443-1&rft_dat=%3Cproquest_cross%3E2259624164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259624164&rft_id=info:pmid/&rfr_iscdi=true |