Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3

In the present study, an attempt is made for the first time to reinforce long-period stacking ordered (LPSO) MgY 1.06 Zn 0.76 Al 0.42 (at.%) alloy with 0.5, 1.0, and 1.5 vol% of nano-Al 2 O 3 particles to form nanocomposites. Microstructure characterization revealed the ability of nano-Al 2 O 3 in i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2016-04, Vol.51 (8), p.4160-4168
Hauptverfasser: Tan, XingHe, Chee, Winston Keat How, Chan, Jimmy Kwok Weng, Kwok, Richard Wai Onn, Gupta, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4168
container_issue 8
container_start_page 4160
container_title Journal of materials science
container_volume 51
creator Tan, XingHe
Chee, Winston Keat How
Chan, Jimmy Kwok Weng
Kwok, Richard Wai Onn
Gupta, Manoj
description In the present study, an attempt is made for the first time to reinforce long-period stacking ordered (LPSO) MgY 1.06 Zn 0.76 Al 0.42 (at.%) alloy with 0.5, 1.0, and 1.5 vol% of nano-Al 2 O 3 particles to form nanocomposites. Microstructure characterization revealed the ability of nano-Al 2 O 3 in inhibiting the formation of 14H LPSO phases in the nanocomposites during solidification. Homogenization at 723 K (450 °C) for 2 h led to the subsequent precipitation of fine Mg-Y-Zn-Al precipitates (≤1 µm) in the nanocomposites. The fine Mg-Y-Zn-Al precipitates and nano-Al 2 O 3 particles were established to be active in promoting dynamic recrystallization (DRX) of α-Mg via particle-simulated nucleation during extrusion, which was responsible for weakening the basal texture in the nanocomposites and improving failure strain. As a result, failure strain was significantly increased from 10.8 % in the monolithic alloy to beyond 15 % in the nanocomposites with the highest strength among nanocomposites achieved in NC5 (nanocomposite reinforced with 0.5 vol% of nano-Al 2 O 3 particles).
doi_str_mv 10.1007/s10853-016-9742-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259623916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259623916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d9459d8a973b08380ca2ffa53c708d9057a5f3b3b58215cdf7490c426e68f7e43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTPmWRZxBdUKlQXugnpTGYmZcy0SSr035uxgitXl8M953DvB8AlwdcE4_ImEiwFQ5gUSJWcInUEJkSUDHGJ2TGYYEwporwgp-AsxjXGWJSUTMB2mYJNVed8C1NnofWt89aGUccUjPNwaGDn2m6UeZs6OH9ZLuB2Z5IN3oQ9fG7RO_rwaNZD0_fDHn45A51Ptg0mueGnwRs_ZANdsHNw0pg-2ovfOQVv93evt49ovnh4up3NUcVFkVCtuFC1NKpkKyyZxJWhTWMEq0osa5XPN6JhK7YSkhJR1U3JFa44LWwhm9JyNgVXh95NGLY7G5NeD7t8cB81pUIVlClSZBc5uKowxBhsozfBfeavNMF6JKsPZHUmq0eyWuUMPWTiZuRkw1_z_6FvYn57CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259623916</pqid></control><display><type>article</type><title>Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3</title><source>Springer Online Journals Complete</source><creator>Tan, XingHe ; Chee, Winston Keat How ; Chan, Jimmy Kwok Weng ; Kwok, Richard Wai Onn ; Gupta, Manoj</creator><creatorcontrib>Tan, XingHe ; Chee, Winston Keat How ; Chan, Jimmy Kwok Weng ; Kwok, Richard Wai Onn ; Gupta, Manoj</creatorcontrib><description>In the present study, an attempt is made for the first time to reinforce long-period stacking ordered (LPSO) MgY 1.06 Zn 0.76 Al 0.42 (at.%) alloy with 0.5, 1.0, and 1.5 vol% of nano-Al 2 O 3 particles to form nanocomposites. Microstructure characterization revealed the ability of nano-Al 2 O 3 in inhibiting the formation of 14H LPSO phases in the nanocomposites during solidification. Homogenization at 723 K (450 °C) for 2 h led to the subsequent precipitation of fine Mg-Y-Zn-Al precipitates (≤1 µm) in the nanocomposites. The fine Mg-Y-Zn-Al precipitates and nano-Al 2 O 3 particles were established to be active in promoting dynamic recrystallization (DRX) of α-Mg via particle-simulated nucleation during extrusion, which was responsible for weakening the basal texture in the nanocomposites and improving failure strain. As a result, failure strain was significantly increased from 10.8 % in the monolithic alloy to beyond 15 % in the nanocomposites with the highest strength among nanocomposites achieved in NC5 (nanocomposite reinforced with 0.5 vol% of nano-Al 2 O 3 particles).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-9742-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dynamic recrystallization ; Extrusion ; High strength alloys ; Magnesium ; Materials Science ; Nanocomposites ; Nucleation ; Original Paper ; Polymer Sciences ; Precipitates ; Quaternary alloys ; Solid Mechanics ; Solidification ; Zinc base alloys</subject><ispartof>Journal of materials science, 2016-04, Vol.51 (8), p.4160-4168</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-d9459d8a973b08380ca2ffa53c708d9057a5f3b3b58215cdf7490c426e68f7e43</citedby><cites>FETCH-LOGICAL-c456t-d9459d8a973b08380ca2ffa53c708d9057a5f3b3b58215cdf7490c426e68f7e43</cites><orcidid>0000-0003-2899-1902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-9742-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-9742-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Tan, XingHe</creatorcontrib><creatorcontrib>Chee, Winston Keat How</creatorcontrib><creatorcontrib>Chan, Jimmy Kwok Weng</creatorcontrib><creatorcontrib>Kwok, Richard Wai Onn</creatorcontrib><creatorcontrib>Gupta, Manoj</creatorcontrib><title>Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In the present study, an attempt is made for the first time to reinforce long-period stacking ordered (LPSO) MgY 1.06 Zn 0.76 Al 0.42 (at.%) alloy with 0.5, 1.0, and 1.5 vol% of nano-Al 2 O 3 particles to form nanocomposites. Microstructure characterization revealed the ability of nano-Al 2 O 3 in inhibiting the formation of 14H LPSO phases in the nanocomposites during solidification. Homogenization at 723 K (450 °C) for 2 h led to the subsequent precipitation of fine Mg-Y-Zn-Al precipitates (≤1 µm) in the nanocomposites. The fine Mg-Y-Zn-Al precipitates and nano-Al 2 O 3 particles were established to be active in promoting dynamic recrystallization (DRX) of α-Mg via particle-simulated nucleation during extrusion, which was responsible for weakening the basal texture in the nanocomposites and improving failure strain. As a result, failure strain was significantly increased from 10.8 % in the monolithic alloy to beyond 15 % in the nanocomposites with the highest strength among nanocomposites achieved in NC5 (nanocomposite reinforced with 0.5 vol% of nano-Al 2 O 3 particles).</description><subject>Aluminum oxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dynamic recrystallization</subject><subject>Extrusion</subject><subject>High strength alloys</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nucleation</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Quaternary alloys</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Zinc base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTPmWRZxBdUKlQXugnpTGYmZcy0SSr035uxgitXl8M953DvB8AlwdcE4_ImEiwFQ5gUSJWcInUEJkSUDHGJ2TGYYEwporwgp-AsxjXGWJSUTMB2mYJNVed8C1NnofWt89aGUccUjPNwaGDn2m6UeZs6OH9ZLuB2Z5IN3oQ9fG7RO_rwaNZD0_fDHn45A51Ptg0mueGnwRs_ZANdsHNw0pg-2ovfOQVv93evt49ovnh4up3NUcVFkVCtuFC1NKpkKyyZxJWhTWMEq0osa5XPN6JhK7YSkhJR1U3JFa44LWwhm9JyNgVXh95NGLY7G5NeD7t8cB81pUIVlClSZBc5uKowxBhsozfBfeavNMF6JKsPZHUmq0eyWuUMPWTiZuRkw1_z_6FvYn57CQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Tan, XingHe</creator><creator>Chee, Winston Keat How</creator><creator>Chan, Jimmy Kwok Weng</creator><creator>Kwok, Richard Wai Onn</creator><creator>Gupta, Manoj</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2899-1902</orcidid></search><sort><creationdate>20160401</creationdate><title>Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3</title><author>Tan, XingHe ; Chee, Winston Keat How ; Chan, Jimmy Kwok Weng ; Kwok, Richard Wai Onn ; Gupta, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d9459d8a973b08380ca2ffa53c708d9057a5f3b3b58215cdf7490c426e68f7e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum oxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dynamic recrystallization</topic><topic>Extrusion</topic><topic>High strength alloys</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nucleation</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Quaternary alloys</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Zinc base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, XingHe</creatorcontrib><creatorcontrib>Chee, Winston Keat How</creatorcontrib><creatorcontrib>Chan, Jimmy Kwok Weng</creatorcontrib><creatorcontrib>Kwok, Richard Wai Onn</creatorcontrib><creatorcontrib>Gupta, Manoj</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, XingHe</au><au>Chee, Winston Keat How</au><au>Chan, Jimmy Kwok Weng</au><au>Kwok, Richard Wai Onn</au><au>Gupta, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>51</volume><issue>8</issue><spage>4160</spage><epage>4168</epage><pages>4160-4168</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In the present study, an attempt is made for the first time to reinforce long-period stacking ordered (LPSO) MgY 1.06 Zn 0.76 Al 0.42 (at.%) alloy with 0.5, 1.0, and 1.5 vol% of nano-Al 2 O 3 particles to form nanocomposites. Microstructure characterization revealed the ability of nano-Al 2 O 3 in inhibiting the formation of 14H LPSO phases in the nanocomposites during solidification. Homogenization at 723 K (450 °C) for 2 h led to the subsequent precipitation of fine Mg-Y-Zn-Al precipitates (≤1 µm) in the nanocomposites. The fine Mg-Y-Zn-Al precipitates and nano-Al 2 O 3 particles were established to be active in promoting dynamic recrystallization (DRX) of α-Mg via particle-simulated nucleation during extrusion, which was responsible for weakening the basal texture in the nanocomposites and improving failure strain. As a result, failure strain was significantly increased from 10.8 % in the monolithic alloy to beyond 15 % in the nanocomposites with the highest strength among nanocomposites achieved in NC5 (nanocomposite reinforced with 0.5 vol% of nano-Al 2 O 3 particles).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-9742-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2899-1902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-04, Vol.51 (8), p.4160-4168
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259623916
source Springer Online Journals Complete
subjects Aluminum oxide
Characterization and Evaluation of Materials
Chemical precipitation
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Dynamic recrystallization
Extrusion
High strength alloys
Magnesium
Materials Science
Nanocomposites
Nucleation
Original Paper
Polymer Sciences
Precipitates
Quaternary alloys
Solid Mechanics
Solidification
Zinc base alloys
title Stretching the engineering strain of high strength LPSO quaternary Mg-Y-Zn-Al alloy via integration of nano-Al2O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20the%20engineering%20strain%20of%20high%20strength%20LPSO%20quaternary%20Mg-Y-Zn-Al%20alloy%20via%20integration%20of%20nano-Al2O3&rft.jtitle=Journal%20of%20materials%20science&rft.au=Tan,%20XingHe&rft.date=2016-04-01&rft.volume=51&rft.issue=8&rft.spage=4160&rft.epage=4168&rft.pages=4160-4168&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-9742-9&rft_dat=%3Cproquest_cross%3E2259623916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259623916&rft_id=info:pmid/&rfr_iscdi=true