Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt

With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO 2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-05, Vol.52 (10), p.5788-5798
Hauptverfasser: Zhang, Jingwen, Dong, Liubing, Xu, Chengjun, Hao, Jianwu, Kang, Feiyu, Li, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5798
container_issue 10
container_start_page 5788
container_title Journal of materials science
container_volume 52
creator Zhang, Jingwen
Dong, Liubing
Xu, Chengjun
Hao, Jianwu
Kang, Feiyu
Li, Jia
description With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO 2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on micro-morphologies and electrochemical characteristics for prepared textiles were compared. High-performance flexible MnO 2 /CNT/ACFF composite electrodes were synthesized by introducing CNT and MnO 2 /CNT fillers successively. Compared with original ACFF textiles, significant improvements in electrochemical performance were achieved. Areal capacitance, energy density and power density of the composite textiles reached as high as 4148 mF cm −2 , 141 μWh cm −2 and 4466 μW cm −2 , respectively. Furthermore, flexible supercapacitors were fabricated based on the composite textile electrodes and gel electrolytes. When being bent at different angles or suffering deformations such as bending for 100 cycles, the flexible supercapacitors preserve almost all the capacitance, which indicates the excellent flexibility of the composite textile electrode. This work provides various approaches to design composite textiles, and the prepared MnO 2 /CNT/ACFF composite textile may be a promising electrode material for high-performance flexible supercapacitors.
doi_str_mv 10.1007/s10853-017-0813-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259623802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259623802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-892263f63706a66ea60f9ec968dec694e2377be48e8f704e720f950977e420f83</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOvYmmUkySyn-geJG1yGT3rEj08mYpKKv4FObUsGVq3vgfOfAPYScc7jkAHqROJhaMuCageGSyQMy47WWrDIgD8kMQAgmKsWPyUlKbwBQa8Fn5HsZNlPENY6p_0DqpikG59eYaA40ryMiW_WbnRtGN9BuwM--HZCm7YTRu8n5PodIcUCfY1iVXOsSrmgY6eP4JBbexbbo0Y0hb1tcOJ_7D5cL8et0fYuRdjjkU3LUuSHh2e-dk5eb6-flHXt4ur1fXj0wL2udmWmEULJTUoNySqFT0DXoG2VW6FVToZBat1gZNJ2GCrUofg2N1lgVaeScXOx7y6vvW0zZvoVtLN8lK0TdKCENiELxPeVjSCliZ6fYb1z8shzsbnK7n9yWye1ucitLRuwzqbDjK8a_5v9DP4jUhhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259623802</pqid></control><display><type>article</type><title>Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt</title><source>SpringerNature Journals</source><creator>Zhang, Jingwen ; Dong, Liubing ; Xu, Chengjun ; Hao, Jianwu ; Kang, Feiyu ; Li, Jia</creator><creatorcontrib>Zhang, Jingwen ; Dong, Liubing ; Xu, Chengjun ; Hao, Jianwu ; Kang, Feiyu ; Li, Jia</creatorcontrib><description>With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO 2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on micro-morphologies and electrochemical characteristics for prepared textiles were compared. High-performance flexible MnO 2 /CNT/ACFF composite electrodes were synthesized by introducing CNT and MnO 2 /CNT fillers successively. Compared with original ACFF textiles, significant improvements in electrochemical performance were achieved. Areal capacitance, energy density and power density of the composite textiles reached as high as 4148 mF cm −2 , 141 μWh cm −2 and 4466 μW cm −2 , respectively. Furthermore, flexible supercapacitors were fabricated based on the composite textile electrodes and gel electrolytes. When being bent at different angles or suffering deformations such as bending for 100 cycles, the flexible supercapacitors preserve almost all the capacitance, which indicates the excellent flexibility of the composite textile electrode. This work provides various approaches to design composite textiles, and the prepared MnO 2 /CNT/ACFF composite textile may be a promising electrode material for high-performance flexible supercapacitors.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-0813-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Capacitance ; Carbon fibers ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Deformation ; Electrochemical analysis ; Electrode materials ; Electrodes ; Electrolytes ; Fillers ; Flux density ; Manganese dioxide ; Materials Science ; Morphology ; Original Paper ; Polymer Sciences ; Portable equipment ; Solid Mechanics ; Supercapacitors ; Textiles ; Wearable technology</subject><ispartof>Journal of materials science, 2017-05, Vol.52 (10), p.5788-5798</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-892263f63706a66ea60f9ec968dec694e2377be48e8f704e720f950977e420f83</citedby><cites>FETCH-LOGICAL-c357t-892263f63706a66ea60f9ec968dec694e2377be48e8f704e720f950977e420f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-0813-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-0813-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Dong, Liubing</creatorcontrib><creatorcontrib>Xu, Chengjun</creatorcontrib><creatorcontrib>Hao, Jianwu</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><title>Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO 2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on micro-morphologies and electrochemical characteristics for prepared textiles were compared. High-performance flexible MnO 2 /CNT/ACFF composite electrodes were synthesized by introducing CNT and MnO 2 /CNT fillers successively. Compared with original ACFF textiles, significant improvements in electrochemical performance were achieved. Areal capacitance, energy density and power density of the composite textiles reached as high as 4148 mF cm −2 , 141 μWh cm −2 and 4466 μW cm −2 , respectively. Furthermore, flexible supercapacitors were fabricated based on the composite textile electrodes and gel electrolytes. When being bent at different angles or suffering deformations such as bending for 100 cycles, the flexible supercapacitors preserve almost all the capacitance, which indicates the excellent flexibility of the composite textile electrode. This work provides various approaches to design composite textiles, and the prepared MnO 2 /CNT/ACFF composite textile may be a promising electrode material for high-performance flexible supercapacitors.</description><subject>Activated carbon</subject><subject>Capacitance</subject><subject>Carbon fibers</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fillers</subject><subject>Flux density</subject><subject>Manganese dioxide</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Portable equipment</subject><subject>Solid Mechanics</subject><subject>Supercapacitors</subject><subject>Textiles</subject><subject>Wearable technology</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOvYmmUkySyn-geJG1yGT3rEj08mYpKKv4FObUsGVq3vgfOfAPYScc7jkAHqROJhaMuCageGSyQMy47WWrDIgD8kMQAgmKsWPyUlKbwBQa8Fn5HsZNlPENY6p_0DqpikG59eYaA40ryMiW_WbnRtGN9BuwM--HZCm7YTRu8n5PodIcUCfY1iVXOsSrmgY6eP4JBbexbbo0Y0hb1tcOJ_7D5cL8et0fYuRdjjkU3LUuSHh2e-dk5eb6-flHXt4ur1fXj0wL2udmWmEULJTUoNySqFT0DXoG2VW6FVToZBat1gZNJ2GCrUofg2N1lgVaeScXOx7y6vvW0zZvoVtLN8lK0TdKCENiELxPeVjSCliZ6fYb1z8shzsbnK7n9yWye1ucitLRuwzqbDjK8a_5v9DP4jUhhA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zhang, Jingwen</creator><creator>Dong, Liubing</creator><creator>Xu, Chengjun</creator><creator>Hao, Jianwu</creator><creator>Kang, Feiyu</creator><creator>Li, Jia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170501</creationdate><title>Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt</title><author>Zhang, Jingwen ; Dong, Liubing ; Xu, Chengjun ; Hao, Jianwu ; Kang, Feiyu ; Li, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-892263f63706a66ea60f9ec968dec694e2377be48e8f704e720f950977e420f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activated carbon</topic><topic>Capacitance</topic><topic>Carbon fibers</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fillers</topic><topic>Flux density</topic><topic>Manganese dioxide</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Portable equipment</topic><topic>Solid Mechanics</topic><topic>Supercapacitors</topic><topic>Textiles</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingwen</creatorcontrib><creatorcontrib>Dong, Liubing</creatorcontrib><creatorcontrib>Xu, Chengjun</creatorcontrib><creatorcontrib>Hao, Jianwu</creatorcontrib><creatorcontrib>Kang, Feiyu</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingwen</au><au>Dong, Liubing</au><au>Xu, Chengjun</au><au>Hao, Jianwu</au><au>Kang, Feiyu</au><au>Li, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>52</volume><issue>10</issue><spage>5788</spage><epage>5798</epage><pages>5788-5798</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO 2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on micro-morphologies and electrochemical characteristics for prepared textiles were compared. High-performance flexible MnO 2 /CNT/ACFF composite electrodes were synthesized by introducing CNT and MnO 2 /CNT fillers successively. Compared with original ACFF textiles, significant improvements in electrochemical performance were achieved. Areal capacitance, energy density and power density of the composite textiles reached as high as 4148 mF cm −2 , 141 μWh cm −2 and 4466 μW cm −2 , respectively. Furthermore, flexible supercapacitors were fabricated based on the composite textile electrodes and gel electrolytes. When being bent at different angles or suffering deformations such as bending for 100 cycles, the flexible supercapacitors preserve almost all the capacitance, which indicates the excellent flexibility of the composite textile electrode. This work provides various approaches to design composite textiles, and the prepared MnO 2 /CNT/ACFF composite textile may be a promising electrode material for high-performance flexible supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-0813-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-05, Vol.52 (10), p.5788-5798
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259623802
source SpringerNature Journals
subjects Activated carbon
Capacitance
Carbon fibers
Carbon nanotubes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Deformation
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Fillers
Flux density
Manganese dioxide
Materials Science
Morphology
Original Paper
Polymer Sciences
Portable equipment
Solid Mechanics
Supercapacitors
Textiles
Wearable technology
title Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20approaches%20to%20three-dimensional%20flexible%20supercapacitor%20electrodes%20based%20on%20MnO2/carbon%20nanotube/activated%20carbon%20fiber%20felt&rft.jtitle=Journal%20of%20materials%20science&rft.au=Zhang,%20Jingwen&rft.date=2017-05-01&rft.volume=52&rft.issue=10&rft.spage=5788&rft.epage=5798&rft.pages=5788-5798&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-0813-3&rft_dat=%3Cproquest_cross%3E2259623802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259623802&rft_id=info:pmid/&rfr_iscdi=true