Tensile properties of binary and alloyed Galfenol

Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2015-08, Vol.50 (15), p.5136-5144
Hauptverfasser: Nolting, A. E., Summers, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5144
container_issue 15
container_start_page 5136
container_title Journal of materials science
container_volume 50
creator Nolting, A. E.
Summers, Eric
description Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.
doi_str_mv 10.1007/s10853-015-9045-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259619451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435385391</galeid><sourcerecordid>A435385391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvBk4fML2nSNscxdA4Ggs5zyNIvo6NrZtKB-_dmVJAdJIdAeN7ve_MQcs9gwgDKp8igkjkFJqkCIWlxQUZMljkVFeSXZATAOeWiYNfkJsYtAMiSsxFhK-xi02K2D36PoW8wZt5l66Yz4ZiZrs5M2_oj1tnctA47396SK2faiHe_95h8vjyvZq90-TZfzKZLaoVUPS2VA-GsFMzWdaXWpSusqEx65pUr0YBSRbl2kDqBQoVSYpFbDqh4ZRjL8zF5GOamZl8HjL3e-kPo0krNuVQFU0KyRE0GamNa1E3nfB-MTafGXWN9hy59Tk9FLvPkR50Cj2eBxPT43W_MIUa9-Hg_Z9nA2uBjDOj0PjS7JEYz0CftetCuk3Z90q6LlOFDJia222D4q_1_6AcKFoIL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259619451</pqid></control><display><type>article</type><title>Tensile properties of binary and alloyed Galfenol</title><source>SpringerNature Journals</source><creator>Nolting, A. E. ; Summers, Eric</creator><creatorcontrib>Nolting, A. E. ; Summers, Eric</creatorcontrib><description>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9045-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Active damping ; Alloying additive ; Alloying effects ; Alloying elements ; Alloys ; Carbon steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Ductility ; Energy harvesting ; Fracture surfaces ; Functional materials ; Galfenol ; Gallium base alloys ; Heat treating ; Intergranular fracture ; Low carbon steels ; Magnetic properties ; Materials Science ; Mechanical properties ; Original Paper ; Piezoelectric ceramics ; Piezoelectricity ; Plastic deformation ; Polymer Sciences ; Qualitative analysis ; Solid Mechanics ; Specialty metals industry ; Tensile properties ; Terfenol alloys ; Transgranular fracture</subject><ispartof>Journal of materials science, 2015-08, Vol.50 (15), p.5136-5144</ispartof><rights>Her Majesty the Queen in Right of Canada 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</citedby><cites>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9045-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9045-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nolting, A. E.</creatorcontrib><creatorcontrib>Summers, Eric</creatorcontrib><title>Tensile properties of binary and alloyed Galfenol</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</description><subject>Active damping</subject><subject>Alloying additive</subject><subject>Alloying effects</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Carbon steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Ductility</subject><subject>Energy harvesting</subject><subject>Fracture surfaces</subject><subject>Functional materials</subject><subject>Galfenol</subject><subject>Gallium base alloys</subject><subject>Heat treating</subject><subject>Intergranular fracture</subject><subject>Low carbon steels</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Original Paper</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Plastic deformation</subject><subject>Polymer Sciences</subject><subject>Qualitative analysis</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tensile properties</subject><subject>Terfenol alloys</subject><subject>Transgranular fracture</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvBk4fML2nSNscxdA4Ggs5zyNIvo6NrZtKB-_dmVJAdJIdAeN7ve_MQcs9gwgDKp8igkjkFJqkCIWlxQUZMljkVFeSXZATAOeWiYNfkJsYtAMiSsxFhK-xi02K2D36PoW8wZt5l66Yz4ZiZrs5M2_oj1tnctA47396SK2faiHe_95h8vjyvZq90-TZfzKZLaoVUPS2VA-GsFMzWdaXWpSusqEx65pUr0YBSRbl2kDqBQoVSYpFbDqh4ZRjL8zF5GOamZl8HjL3e-kPo0krNuVQFU0KyRE0GamNa1E3nfB-MTafGXWN9hy59Tk9FLvPkR50Cj2eBxPT43W_MIUa9-Hg_Z9nA2uBjDOj0PjS7JEYz0CftetCuk3Z90q6LlOFDJia222D4q_1_6AcKFoIL</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Nolting, A. E.</creator><creator>Summers, Eric</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150801</creationdate><title>Tensile properties of binary and alloyed Galfenol</title><author>Nolting, A. E. ; Summers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active damping</topic><topic>Alloying additive</topic><topic>Alloying effects</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Carbon steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Ductility</topic><topic>Energy harvesting</topic><topic>Fracture surfaces</topic><topic>Functional materials</topic><topic>Galfenol</topic><topic>Gallium base alloys</topic><topic>Heat treating</topic><topic>Intergranular fracture</topic><topic>Low carbon steels</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Original Paper</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Plastic deformation</topic><topic>Polymer Sciences</topic><topic>Qualitative analysis</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tensile properties</topic><topic>Terfenol alloys</topic><topic>Transgranular fracture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolting, A. E.</creatorcontrib><creatorcontrib>Summers, Eric</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolting, A. E.</au><au>Summers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile properties of binary and alloyed Galfenol</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>50</volume><issue>15</issue><spage>5136</spage><epage>5144</epage><pages>5136-5144</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9045-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2015-08, Vol.50 (15), p.5136-5144
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259619451
source SpringerNature Journals
subjects Active damping
Alloying additive
Alloying effects
Alloying elements
Alloys
Carbon steel
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Ductility
Energy harvesting
Fracture surfaces
Functional materials
Galfenol
Gallium base alloys
Heat treating
Intergranular fracture
Low carbon steels
Magnetic properties
Materials Science
Mechanical properties
Original Paper
Piezoelectric ceramics
Piezoelectricity
Plastic deformation
Polymer Sciences
Qualitative analysis
Solid Mechanics
Specialty metals industry
Tensile properties
Terfenol alloys
Transgranular fracture
title Tensile properties of binary and alloyed Galfenol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20properties%20of%20binary%20and%20alloyed%20Galfenol&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nolting,%20A.%20E.&rft.date=2015-08-01&rft.volume=50&rft.issue=15&rft.spage=5136&rft.epage=5144&rft.pages=5136-5144&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9045-6&rft_dat=%3Cgale_proqu%3EA435385391%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259619451&rft_id=info:pmid/&rft_galeid=A435385391&rfr_iscdi=true