Tensile properties of binary and alloyed Galfenol
Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2015-08, Vol.50 (15), p.5136-5144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5144 |
---|---|
container_issue | 15 |
container_start_page | 5136 |
container_title | Journal of materials science |
container_volume | 50 |
creator | Nolting, A. E. Summers, Eric |
description | Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture. |
doi_str_mv | 10.1007/s10853-015-9045-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259619451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435385391</galeid><sourcerecordid>A435385391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvBk4fML2nSNscxdA4Ggs5zyNIvo6NrZtKB-_dmVJAdJIdAeN7ve_MQcs9gwgDKp8igkjkFJqkCIWlxQUZMljkVFeSXZATAOeWiYNfkJsYtAMiSsxFhK-xi02K2D36PoW8wZt5l66Yz4ZiZrs5M2_oj1tnctA47396SK2faiHe_95h8vjyvZq90-TZfzKZLaoVUPS2VA-GsFMzWdaXWpSusqEx65pUr0YBSRbl2kDqBQoVSYpFbDqh4ZRjL8zF5GOamZl8HjL3e-kPo0krNuVQFU0KyRE0GamNa1E3nfB-MTafGXWN9hy59Tk9FLvPkR50Cj2eBxPT43W_MIUa9-Hg_Z9nA2uBjDOj0PjS7JEYz0CftetCuk3Z90q6LlOFDJia222D4q_1_6AcKFoIL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259619451</pqid></control><display><type>article</type><title>Tensile properties of binary and alloyed Galfenol</title><source>SpringerNature Journals</source><creator>Nolting, A. E. ; Summers, Eric</creator><creatorcontrib>Nolting, A. E. ; Summers, Eric</creatorcontrib><description>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9045-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Active damping ; Alloying additive ; Alloying effects ; Alloying elements ; Alloys ; Carbon steel ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Ductility ; Energy harvesting ; Fracture surfaces ; Functional materials ; Galfenol ; Gallium base alloys ; Heat treating ; Intergranular fracture ; Low carbon steels ; Magnetic properties ; Materials Science ; Mechanical properties ; Original Paper ; Piezoelectric ceramics ; Piezoelectricity ; Plastic deformation ; Polymer Sciences ; Qualitative analysis ; Solid Mechanics ; Specialty metals industry ; Tensile properties ; Terfenol alloys ; Transgranular fracture</subject><ispartof>Journal of materials science, 2015-08, Vol.50 (15), p.5136-5144</ispartof><rights>Her Majesty the Queen in Right of Canada 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</citedby><cites>FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9045-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9045-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nolting, A. E.</creatorcontrib><creatorcontrib>Summers, Eric</creatorcontrib><title>Tensile properties of binary and alloyed Galfenol</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</description><subject>Active damping</subject><subject>Alloying additive</subject><subject>Alloying effects</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Carbon steel</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Ductility</subject><subject>Energy harvesting</subject><subject>Fracture surfaces</subject><subject>Functional materials</subject><subject>Galfenol</subject><subject>Gallium base alloys</subject><subject>Heat treating</subject><subject>Intergranular fracture</subject><subject>Low carbon steels</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Original Paper</subject><subject>Piezoelectric ceramics</subject><subject>Piezoelectricity</subject><subject>Plastic deformation</subject><subject>Polymer Sciences</subject><subject>Qualitative analysis</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tensile properties</subject><subject>Terfenol alloys</subject><subject>Transgranular fracture</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvBk4fML2nSNscxdA4Ggs5zyNIvo6NrZtKB-_dmVJAdJIdAeN7ve_MQcs9gwgDKp8igkjkFJqkCIWlxQUZMljkVFeSXZATAOeWiYNfkJsYtAMiSsxFhK-xi02K2D36PoW8wZt5l66Yz4ZiZrs5M2_oj1tnctA47396SK2faiHe_95h8vjyvZq90-TZfzKZLaoVUPS2VA-GsFMzWdaXWpSusqEx65pUr0YBSRbl2kDqBQoVSYpFbDqh4ZRjL8zF5GOamZl8HjL3e-kPo0krNuVQFU0KyRE0GamNa1E3nfB-MTafGXWN9hy59Tk9FLvPkR50Cj2eBxPT43W_MIUa9-Hg_Z9nA2uBjDOj0PjS7JEYz0CftetCuk3Z90q6LlOFDJia222D4q_1_6AcKFoIL</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Nolting, A. E.</creator><creator>Summers, Eric</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150801</creationdate><title>Tensile properties of binary and alloyed Galfenol</title><author>Nolting, A. E. ; Summers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-79f04fc541cdd89b7f6c48a79f28f7ea09967bf024609e9e55e63c20e928a1133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active damping</topic><topic>Alloying additive</topic><topic>Alloying effects</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Carbon steel</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Ductility</topic><topic>Energy harvesting</topic><topic>Fracture surfaces</topic><topic>Functional materials</topic><topic>Galfenol</topic><topic>Gallium base alloys</topic><topic>Heat treating</topic><topic>Intergranular fracture</topic><topic>Low carbon steels</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Original Paper</topic><topic>Piezoelectric ceramics</topic><topic>Piezoelectricity</topic><topic>Plastic deformation</topic><topic>Polymer Sciences</topic><topic>Qualitative analysis</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tensile properties</topic><topic>Terfenol alloys</topic><topic>Transgranular fracture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolting, A. E.</creatorcontrib><creatorcontrib>Summers, Eric</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolting, A. E.</au><au>Summers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile properties of binary and alloyed Galfenol</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>50</volume><issue>15</issue><spage>5136</spage><epage>5144</epage><pages>5136-5144</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Iron–gallium alloys, known as Galfenol, have a unique combination of magneto-mechanical and structural properties that make them an attractive choice for use in robust sensing, actuating, and energy harvesting devices. The high strength and toughness of Galfenol, when compared to traditional active materials such as Terfenol-D and piezoelectric ceramics, are leading to multi-functional (structural and active) applications, such as active-damping engine mounts. Although the toughness of Galfenol is high compared to other functional materials, further improvements in toughness and ductility are beneficial for structural applications. Qualitative analysis of fracture surfaces from binary Galfenol tensile specimens suggests an inverse correlation between the degree of intergranular fracture and the amount of plastic deformation. This implies that modifications to the alloy composition or processing that change the fracture mode from intergranular to transgranular could increase the ductility of the alloy. This paper examines the effect of small additions of tertiary alloying elements (C, Cr, Al) and mixing with low carbon steel (with and without V additions) on the tensile properties and fracture mode of Galfenol. Generally, the addition of alloying elements increased both strength and ductility and changed the fracture mode from intergranular to transgranular fracture.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9045-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2015-08, Vol.50 (15), p.5136-5144 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259619451 |
source | SpringerNature Journals |
subjects | Active damping Alloying additive Alloying effects Alloying elements Alloys Carbon steel Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Ductility Energy harvesting Fracture surfaces Functional materials Galfenol Gallium base alloys Heat treating Intergranular fracture Low carbon steels Magnetic properties Materials Science Mechanical properties Original Paper Piezoelectric ceramics Piezoelectricity Plastic deformation Polymer Sciences Qualitative analysis Solid Mechanics Specialty metals industry Tensile properties Terfenol alloys Transgranular fracture |
title | Tensile properties of binary and alloyed Galfenol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20properties%20of%20binary%20and%20alloyed%20Galfenol&rft.jtitle=Journal%20of%20materials%20science&rft.au=Nolting,%20A.%20E.&rft.date=2015-08-01&rft.volume=50&rft.issue=15&rft.spage=5136&rft.epage=5144&rft.pages=5136-5144&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9045-6&rft_dat=%3Cgale_proqu%3EA435385391%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259619451&rft_id=info:pmid/&rft_galeid=A435385391&rfr_iscdi=true |