DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application
Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2017-09, Vol.52 (18), p.10972-10980 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10980 |
---|---|
container_issue | 18 |
container_start_page | 10972 |
container_title | Journal of materials science |
container_volume | 52 |
creator | Chakrabarti, Shamik Biswas, K. |
description | Mg
2
TiO
4
is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg
+2
(0.5 Mg
+2
) ions with Ni
+2
to form Mg
1.5
Ni
0.5
TiO
4
. Mg
2
TiO
4
, Mg
1.5
Ni
0.5
TiO
4
and its de-intercalated end product MgNi
0.5
TiO
4
are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg
1.5
Ni
0.5
TiO
4
becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi
0.5
TiO
4
after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg
1.5
Ni
0.5
TiO
4
indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g
−1
would generate energy density of 637.2 W–h kg
−1
. Simulation of formation energy (E
f
) of Mg
1.5
Ni
0.5
TiO
4
indicates that with rutile TiO
2
the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO
2
the phase formation is highly probable with high negative value of formation energy (E
f
). |
doi_str_mv | 10.1007/s10853-017-1260-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259612742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259612742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc2om2Wx2j1I_obaXeg7ZfJQt22ZNttD-e1NW8ORp4J3nnYEHoXugM6BUPiagleCEgiTASkqOF2gCQnJSVJRfogmljBFWlHCNblLaUkqFZDBB7vl1jdNwsCccPP7csHW7KrDeW7xssQ29szmEmVi2dCbGXcKuc2aIwTq804OLre6wDzGDuA173Oghhyes-75rjR5ydouuvO6Su_udU_T1-rKev5PF6u1j_rQghgs-EAlNwSoqa1-xWlJRG6gZSFH5uvHCgLClrwzjXhS24lJIa2TDZaONs56Lkk_Rw3i3j-H74NKgtuEQ9_mlYkzUJTBZsEzBSJkYUorOqz62Ox1PCqg621SjTZVtqrNNdcwdNnZSZvcbF_8u_1_6AfJUdQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612742</pqid></control><display><type>article</type><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakrabarti, Shamik ; Biswas, K.</creator><creatorcontrib>Chakrabarti, Shamik ; Biswas, K.</creatorcontrib><description>Mg
2
TiO
4
is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg
+2
(0.5 Mg
+2
) ions with Ni
+2
to form Mg
1.5
Ni
0.5
TiO
4
. Mg
2
TiO
4
, Mg
1.5
Ni
0.5
TiO
4
and its de-intercalated end product MgNi
0.5
TiO
4
are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg
1.5
Ni
0.5
TiO
4
becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi
0.5
TiO
4
after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg
1.5
Ni
0.5
TiO
4
indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g
−1
would generate energy density of 637.2 W–h kg
−1
. Simulation of formation energy (E
f
) of Mg
1.5
Ni
0.5
TiO
4
indicates that with rutile TiO
2
the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO
2
the phase formation is highly probable with high negative value of formation energy (E
f
).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1260-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Batteries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Conduction bands ; Crystallography and Scattering Methods ; Diffraction patterns ; Doping ; Electric potential ; Electrode materials ; Energy Materials ; Energy of formation ; Flux density ; Free energy ; Heat of formation ; High voltages ; Intercalation ; Magnetic moments ; Materials Science ; Polymer Sciences ; Solid Mechanics ; Structural stability ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of materials science, 2017-09, Vol.52 (18), p.10972-10980</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</citedby><cites>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1260-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1260-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chakrabarti, Shamik</creatorcontrib><creatorcontrib>Biswas, K.</creatorcontrib><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Mg
2
TiO
4
is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg
+2
(0.5 Mg
+2
) ions with Ni
+2
to form Mg
1.5
Ni
0.5
TiO
4
. Mg
2
TiO
4
, Mg
1.5
Ni
0.5
TiO
4
and its de-intercalated end product MgNi
0.5
TiO
4
are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg
1.5
Ni
0.5
TiO
4
becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi
0.5
TiO
4
after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg
1.5
Ni
0.5
TiO
4
indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g
−1
would generate energy density of 637.2 W–h kg
−1
. Simulation of formation energy (E
f
) of Mg
1.5
Ni
0.5
TiO
4
indicates that with rutile TiO
2
the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO
2
the phase formation is highly probable with high negative value of formation energy (E
f
).</description><subject>Anatase</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Conduction bands</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction patterns</subject><subject>Doping</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Energy Materials</subject><subject>Energy of formation</subject><subject>Flux density</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>High voltages</subject><subject>Intercalation</subject><subject>Magnetic moments</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Structural stability</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc2om2Wx2j1I_obaXeg7ZfJQt22ZNttD-e1NW8ORp4J3nnYEHoXugM6BUPiagleCEgiTASkqOF2gCQnJSVJRfogmljBFWlHCNblLaUkqFZDBB7vl1jdNwsCccPP7csHW7KrDeW7xssQ29szmEmVi2dCbGXcKuc2aIwTq804OLre6wDzGDuA173Oghhyes-75rjR5ydouuvO6Su_udU_T1-rKev5PF6u1j_rQghgs-EAlNwSoqa1-xWlJRG6gZSFH5uvHCgLClrwzjXhS24lJIa2TDZaONs56Lkk_Rw3i3j-H74NKgtuEQ9_mlYkzUJTBZsEzBSJkYUorOqz62Ox1PCqg621SjTZVtqrNNdcwdNnZSZvcbF_8u_1_6AfJUdQ0</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Chakrabarti, Shamik</creator><creator>Biswas, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170901</creationdate><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><author>Chakrabarti, Shamik ; Biswas, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Conduction bands</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction patterns</topic><topic>Doping</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Energy Materials</topic><topic>Energy of formation</topic><topic>Flux density</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>High voltages</topic><topic>Intercalation</topic><topic>Magnetic moments</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Structural stability</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Shamik</creatorcontrib><creatorcontrib>Biswas, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Shamik</au><au>Biswas, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>52</volume><issue>18</issue><spage>10972</spage><epage>10980</epage><pages>10972-10980</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Mg
2
TiO
4
is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg
+2
(0.5 Mg
+2
) ions with Ni
+2
to form Mg
1.5
Ni
0.5
TiO
4
. Mg
2
TiO
4
, Mg
1.5
Ni
0.5
TiO
4
and its de-intercalated end product MgNi
0.5
TiO
4
are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg
1.5
Ni
0.5
TiO
4
becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi
0.5
TiO
4
after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg
1.5
Ni
0.5
TiO
4
indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g
−1
would generate energy density of 637.2 W–h kg
−1
. Simulation of formation energy (E
f
) of Mg
1.5
Ni
0.5
TiO
4
indicates that with rutile TiO
2
the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO
2
the phase formation is highly probable with high negative value of formation energy (E
f
).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1260-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2017-09, Vol.52 (18), p.10972-10980 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259612742 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anatase Batteries Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Conduction bands Crystallography and Scattering Methods Diffraction patterns Doping Electric potential Electrode materials Energy Materials Energy of formation Flux density Free energy Heat of formation High voltages Intercalation Magnetic moments Materials Science Polymer Sciences Solid Mechanics Structural stability Titanium dioxide X-ray diffraction |
title | DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20Mg2TiO4%20and%20Ni%20doped%20Mg1.5Ni0.5TiO4%20as%20electrode%20material%20for%20Mg%20ion%20battery%20application&rft.jtitle=Journal%20of%20materials%20science&rft.au=Chakrabarti,%20Shamik&rft.date=2017-09-01&rft.volume=52&rft.issue=18&rft.spage=10972&rft.epage=10980&rft.pages=10972-10980&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1260-x&rft_dat=%3Cproquest_cross%3E2259612742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259612742&rft_id=info:pmid/&rfr_iscdi=true |