DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application

Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2017-09, Vol.52 (18), p.10972-10980
Hauptverfasser: Chakrabarti, Shamik, Biswas, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10980
container_issue 18
container_start_page 10972
container_title Journal of materials science
container_volume 52
creator Chakrabarti, Shamik
Biswas, K.
description Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO 4 are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg 1.5 Ni 0.5 TiO 4 becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi 0.5 TiO 4 after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg 1.5 Ni 0.5 TiO 4 indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g −1 would generate energy density of 637.2 W–h kg −1 . Simulation of formation energy (E f ) of Mg 1.5 Ni 0.5 TiO 4 indicates that with rutile TiO 2 the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO 2 the phase formation is highly probable with high negative value of formation energy (E f ).
doi_str_mv 10.1007/s10853-017-1260-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259612742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259612742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc2om2Wx2j1I_obaXeg7ZfJQt22ZNttD-e1NW8ORp4J3nnYEHoXugM6BUPiagleCEgiTASkqOF2gCQnJSVJRfogmljBFWlHCNblLaUkqFZDBB7vl1jdNwsCccPP7csHW7KrDeW7xssQ29szmEmVi2dCbGXcKuc2aIwTq804OLre6wDzGDuA173Oghhyes-75rjR5ydouuvO6Su_udU_T1-rKev5PF6u1j_rQghgs-EAlNwSoqa1-xWlJRG6gZSFH5uvHCgLClrwzjXhS24lJIa2TDZaONs56Lkk_Rw3i3j-H74NKgtuEQ9_mlYkzUJTBZsEzBSJkYUorOqz62Ox1PCqg621SjTZVtqrNNdcwdNnZSZvcbF_8u_1_6AfJUdQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612742</pqid></control><display><type>article</type><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chakrabarti, Shamik ; Biswas, K.</creator><creatorcontrib>Chakrabarti, Shamik ; Biswas, K.</creatorcontrib><description>Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO 4 are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg 1.5 Ni 0.5 TiO 4 becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi 0.5 TiO 4 after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg 1.5 Ni 0.5 TiO 4 indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g −1 would generate energy density of 637.2 W–h kg −1 . Simulation of formation energy (E f ) of Mg 1.5 Ni 0.5 TiO 4 indicates that with rutile TiO 2 the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO 2 the phase formation is highly probable with high negative value of formation energy (E f ).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1260-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Batteries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Conduction bands ; Crystallography and Scattering Methods ; Diffraction patterns ; Doping ; Electric potential ; Electrode materials ; Energy Materials ; Energy of formation ; Flux density ; Free energy ; Heat of formation ; High voltages ; Intercalation ; Magnetic moments ; Materials Science ; Polymer Sciences ; Solid Mechanics ; Structural stability ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of materials science, 2017-09, Vol.52 (18), p.10972-10980</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</citedby><cites>FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1260-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1260-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chakrabarti, Shamik</creatorcontrib><creatorcontrib>Biswas, K.</creatorcontrib><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO 4 are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg 1.5 Ni 0.5 TiO 4 becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi 0.5 TiO 4 after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg 1.5 Ni 0.5 TiO 4 indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g −1 would generate energy density of 637.2 W–h kg −1 . Simulation of formation energy (E f ) of Mg 1.5 Ni 0.5 TiO 4 indicates that with rutile TiO 2 the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO 2 the phase formation is highly probable with high negative value of formation energy (E f ).</description><subject>Anatase</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Conduction bands</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction patterns</subject><subject>Doping</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Energy Materials</subject><subject>Energy of formation</subject><subject>Flux density</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>High voltages</subject><subject>Intercalation</subject><subject>Magnetic moments</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Structural stability</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc2om2Wx2j1I_obaXeg7ZfJQt22ZNttD-e1NW8ORp4J3nnYEHoXugM6BUPiagleCEgiTASkqOF2gCQnJSVJRfogmljBFWlHCNblLaUkqFZDBB7vl1jdNwsCccPP7csHW7KrDeW7xssQ29szmEmVi2dCbGXcKuc2aIwTq804OLre6wDzGDuA173Oghhyes-75rjR5ydouuvO6Su_udU_T1-rKev5PF6u1j_rQghgs-EAlNwSoqa1-xWlJRG6gZSFH5uvHCgLClrwzjXhS24lJIa2TDZaONs56Lkk_Rw3i3j-H74NKgtuEQ9_mlYkzUJTBZsEzBSJkYUorOqz62Ox1PCqg621SjTZVtqrNNdcwdNnZSZvcbF_8u_1_6AfJUdQ0</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Chakrabarti, Shamik</creator><creator>Biswas, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170901</creationdate><title>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</title><author>Chakrabarti, Shamik ; Biswas, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-71b428079f8297059c1921758f9bf5c15d6f8c23f54d83757dc7b37bacedf3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Conduction bands</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction patterns</topic><topic>Doping</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Energy Materials</topic><topic>Energy of formation</topic><topic>Flux density</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>High voltages</topic><topic>Intercalation</topic><topic>Magnetic moments</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Structural stability</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarti, Shamik</creatorcontrib><creatorcontrib>Biswas, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarti, Shamik</au><au>Biswas, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>52</volume><issue>18</issue><spage>10972</spage><epage>10980</epage><pages>10972-10980</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Mg 2 TiO 4 is a spinel material, however it is electrochemically inactive. We have simulated Ni doping in its tetrahedral network by partially replacing Mg +2 (0.5 Mg +2 ) ions with Ni +2 to form Mg 1.5 Ni 0.5 TiO 4 . Mg 2 TiO 4 , Mg 1.5 Ni 0.5 TiO 4 and its de-intercalated end product MgNi 0.5 TiO 4 are studied through analysis of structural parameters and density of states. All the three materials produce almost similar x-ray diffraction pattern ensuring structural stability during charge–discharge. After doping of Ni, Mg 1.5 Ni 0.5 TiO 4 becomes electrochemically active, as, only Ni states are found to be contributing charges (electrons) to the conduction band of MgNi 0.5 TiO 4 after de-intercalation. This redox activity is also supported from the magnetic moments of Ni indicating change in valance from +2 to +3 on de-intercalation. Calculation of de-intercalation voltage for de-intercalation of tetrahedral Mg from Mg 1.5 Ni 0.5 TiO 4 indicates a value of 4.22 V. This high voltage with electrochemical capacity 151 mAh g −1 would generate energy density of 637.2 W–h kg −1 . Simulation of formation energy (E f ) of Mg 1.5 Ni 0.5 TiO 4 indicates that with rutile TiO 2 the phase formation is probable with slightly negative value of formation energy, however, with anatase TiO 2 the phase formation is highly probable with high negative value of formation energy (E f ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1260-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2017-09, Vol.52 (18), p.10972-10980
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259612742
source SpringerLink Journals - AutoHoldings
subjects Anatase
Batteries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Conduction bands
Crystallography and Scattering Methods
Diffraction patterns
Doping
Electric potential
Electrode materials
Energy Materials
Energy of formation
Flux density
Free energy
Heat of formation
High voltages
Intercalation
Magnetic moments
Materials Science
Polymer Sciences
Solid Mechanics
Structural stability
Titanium dioxide
X-ray diffraction
title DFT study of Mg2TiO4 and Ni doped Mg1.5Ni0.5TiO4 as electrode material for Mg ion battery application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20Mg2TiO4%20and%20Ni%20doped%20Mg1.5Ni0.5TiO4%20as%20electrode%20material%20for%20Mg%20ion%20battery%20application&rft.jtitle=Journal%20of%20materials%20science&rft.au=Chakrabarti,%20Shamik&rft.date=2017-09-01&rft.volume=52&rft.issue=18&rft.spage=10972&rft.epage=10980&rft.pages=10972-10980&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1260-x&rft_dat=%3Cproquest_cross%3E2259612742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259612742&rft_id=info:pmid/&rfr_iscdi=true