Fabrication of optically transparent cotton fiber composite
In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of t...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2018-08, Vol.53 (15), p.10872-10878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10878 |
---|---|
container_issue | 15 |
container_start_page | 10872 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Abe, Kentaro Morita, Masahiro Yano, Hiroyuki |
description | In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained. |
doi_str_mv | 10.1007/s10853-018-2309-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259612479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538907793</galeid><sourcerecordid>A538907793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</originalsourceid><addsrcrecordid>eNp1kc1qAyEURqW00DTtA3Q30FUXplcddaSrEJo2ECj0Zy2OccKEZJyqgebta5hCyaK4kKvnXL18CN0SmBAA-RAJVJxhIBWmDBQmZ2hEuGS4rICdoxEApZiWglyiqxg3AMAlJSP0ODd1aK1Jre8K3xS-T7nabg9FCqaLvQmuS4X1KeX7pq1dyMWu97FN7hpdNGYb3c3vPkaf86eP2Qtevj4vZtMltiXnCdeqBlmpqmRSWEVV7Sg3olbguJVCVbVVK0GZEMJxYRqp8jwlXynWkLqkAGyM7oa-ffBfexeT3vh96PKTmlKuBKGlVJmaDNTabJ1uu8bnCWxeK7drre9c0-bzKWeVApn5LNyfCJlJ7jutzT5GvXh_O2XJwNrgYwyu0X1odyYcNAF9DEAPAegcgD4GoEl26ODEzHZrF_6-_b_0A20Vhb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612479</pqid></control><display><type>article</type><title>Fabrication of optically transparent cotton fiber composite</title><source>Springer Nature - Complete Springer Journals</source><creator>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</creator><creatorcontrib>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</creatorcontrib><description>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2309-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetylation ; Carboxylation ; Cellulose ; Cellulose fibers ; Cellulosic resins ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cloth ; Composites ; Cotton ; Cotton (Fiber) ; Cotton fibers ; Crystal structure ; Crystallography and Scattering Methods ; Fiber reinforced plastics ; Impregnation ; Light transmittance ; Materials Science ; Nanofibers ; Optical fibers ; Oxidation ; Plant fiber industry ; Polymer Sciences ; Pretreatment ; Solid Mechanics ; Swelling ; Thermal expansion</subject><ispartof>Journal of materials science, 2018-08, Vol.53 (15), p.10872-10878</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</citedby><cites>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2309-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2309-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Abe, Kentaro</creatorcontrib><creatorcontrib>Morita, Masahiro</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><title>Fabrication of optically transparent cotton fiber composite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</description><subject>Acetylation</subject><subject>Carboxylation</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Cellulosic resins</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cloth</subject><subject>Composites</subject><subject>Cotton</subject><subject>Cotton (Fiber)</subject><subject>Cotton fibers</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Fiber reinforced plastics</subject><subject>Impregnation</subject><subject>Light transmittance</subject><subject>Materials Science</subject><subject>Nanofibers</subject><subject>Optical fibers</subject><subject>Oxidation</subject><subject>Plant fiber industry</subject><subject>Polymer Sciences</subject><subject>Pretreatment</subject><subject>Solid Mechanics</subject><subject>Swelling</subject><subject>Thermal expansion</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1qAyEURqW00DTtA3Q30FUXplcddaSrEJo2ECj0Zy2OccKEZJyqgebta5hCyaK4kKvnXL18CN0SmBAA-RAJVJxhIBWmDBQmZ2hEuGS4rICdoxEApZiWglyiqxg3AMAlJSP0ODd1aK1Jre8K3xS-T7nabg9FCqaLvQmuS4X1KeX7pq1dyMWu97FN7hpdNGYb3c3vPkaf86eP2Qtevj4vZtMltiXnCdeqBlmpqmRSWEVV7Sg3olbguJVCVbVVK0GZEMJxYRqp8jwlXynWkLqkAGyM7oa-ffBfexeT3vh96PKTmlKuBKGlVJmaDNTabJ1uu8bnCWxeK7drre9c0-bzKWeVApn5LNyfCJlJ7jutzT5GvXh_O2XJwNrgYwyu0X1odyYcNAF9DEAPAegcgD4GoEl26ODEzHZrF_6-_b_0A20Vhb8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Abe, Kentaro</creator><creator>Morita, Masahiro</creator><creator>Yano, Hiroyuki</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180801</creationdate><title>Fabrication of optically transparent cotton fiber composite</title><author>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Carboxylation</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Cellulosic resins</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cloth</topic><topic>Composites</topic><topic>Cotton</topic><topic>Cotton (Fiber)</topic><topic>Cotton fibers</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Fiber reinforced plastics</topic><topic>Impregnation</topic><topic>Light transmittance</topic><topic>Materials Science</topic><topic>Nanofibers</topic><topic>Optical fibers</topic><topic>Oxidation</topic><topic>Plant fiber industry</topic><topic>Polymer Sciences</topic><topic>Pretreatment</topic><topic>Solid Mechanics</topic><topic>Swelling</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Kentaro</creatorcontrib><creatorcontrib>Morita, Masahiro</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Kentaro</au><au>Morita, Masahiro</au><au>Yano, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of optically transparent cotton fiber composite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>53</volume><issue>15</issue><spage>10872</spage><epage>10878</epage><pages>10872-10878</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2309-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018-08, Vol.53 (15), p.10872-10878 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259612479 |
source | Springer Nature - Complete Springer Journals |
subjects | Acetylation Carboxylation Cellulose Cellulose fibers Cellulosic resins Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Cloth Composites Cotton Cotton (Fiber) Cotton fibers Crystal structure Crystallography and Scattering Methods Fiber reinforced plastics Impregnation Light transmittance Materials Science Nanofibers Optical fibers Oxidation Plant fiber industry Polymer Sciences Pretreatment Solid Mechanics Swelling Thermal expansion |
title | Fabrication of optically transparent cotton fiber composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20optically%20transparent%20cotton%20fiber%20composite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Abe,%20Kentaro&rft.date=2018-08-01&rft.volume=53&rft.issue=15&rft.spage=10872&rft.epage=10878&rft.pages=10872-10878&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2309-1&rft_dat=%3Cgale_proqu%3EA538907793%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259612479&rft_id=info:pmid/&rft_galeid=A538907793&rfr_iscdi=true |