Fabrication of optically transparent cotton fiber composite

In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-08, Vol.53 (15), p.10872-10878
Hauptverfasser: Abe, Kentaro, Morita, Masahiro, Yano, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10878
container_issue 15
container_start_page 10872
container_title Journal of materials science
container_volume 53
creator Abe, Kentaro
Morita, Masahiro
Yano, Hiroyuki
description In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.
doi_str_mv 10.1007/s10853-018-2309-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2259612479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538907793</galeid><sourcerecordid>A538907793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</originalsourceid><addsrcrecordid>eNp1kc1qAyEURqW00DTtA3Q30FUXplcddaSrEJo2ECj0Zy2OccKEZJyqgebta5hCyaK4kKvnXL18CN0SmBAA-RAJVJxhIBWmDBQmZ2hEuGS4rICdoxEApZiWglyiqxg3AMAlJSP0ODd1aK1Jre8K3xS-T7nabg9FCqaLvQmuS4X1KeX7pq1dyMWu97FN7hpdNGYb3c3vPkaf86eP2Qtevj4vZtMltiXnCdeqBlmpqmRSWEVV7Sg3olbguJVCVbVVK0GZEMJxYRqp8jwlXynWkLqkAGyM7oa-ffBfexeT3vh96PKTmlKuBKGlVJmaDNTabJ1uu8bnCWxeK7drre9c0-bzKWeVApn5LNyfCJlJ7jutzT5GvXh_O2XJwNrgYwyu0X1odyYcNAF9DEAPAegcgD4GoEl26ODEzHZrF_6-_b_0A20Vhb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612479</pqid></control><display><type>article</type><title>Fabrication of optically transparent cotton fiber composite</title><source>Springer Nature - Complete Springer Journals</source><creator>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</creator><creatorcontrib>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</creatorcontrib><description>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2309-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acetylation ; Carboxylation ; Cellulose ; Cellulose fibers ; Cellulosic resins ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cloth ; Composites ; Cotton ; Cotton (Fiber) ; Cotton fibers ; Crystal structure ; Crystallography and Scattering Methods ; Fiber reinforced plastics ; Impregnation ; Light transmittance ; Materials Science ; Nanofibers ; Optical fibers ; Oxidation ; Plant fiber industry ; Polymer Sciences ; Pretreatment ; Solid Mechanics ; Swelling ; Thermal expansion</subject><ispartof>Journal of materials science, 2018-08, Vol.53 (15), p.10872-10878</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</citedby><cites>FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2309-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2309-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Abe, Kentaro</creatorcontrib><creatorcontrib>Morita, Masahiro</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><title>Fabrication of optically transparent cotton fiber composite</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</description><subject>Acetylation</subject><subject>Carboxylation</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Cellulosic resins</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cloth</subject><subject>Composites</subject><subject>Cotton</subject><subject>Cotton (Fiber)</subject><subject>Cotton fibers</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Fiber reinforced plastics</subject><subject>Impregnation</subject><subject>Light transmittance</subject><subject>Materials Science</subject><subject>Nanofibers</subject><subject>Optical fibers</subject><subject>Oxidation</subject><subject>Plant fiber industry</subject><subject>Polymer Sciences</subject><subject>Pretreatment</subject><subject>Solid Mechanics</subject><subject>Swelling</subject><subject>Thermal expansion</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1qAyEURqW00DTtA3Q30FUXplcddaSrEJo2ECj0Zy2OccKEZJyqgebta5hCyaK4kKvnXL18CN0SmBAA-RAJVJxhIBWmDBQmZ2hEuGS4rICdoxEApZiWglyiqxg3AMAlJSP0ODd1aK1Jre8K3xS-T7nabg9FCqaLvQmuS4X1KeX7pq1dyMWu97FN7hpdNGYb3c3vPkaf86eP2Qtevj4vZtMltiXnCdeqBlmpqmRSWEVV7Sg3olbguJVCVbVVK0GZEMJxYRqp8jwlXynWkLqkAGyM7oa-ffBfexeT3vh96PKTmlKuBKGlVJmaDNTabJ1uu8bnCWxeK7drre9c0-bzKWeVApn5LNyfCJlJ7jutzT5GvXh_O2XJwNrgYwyu0X1odyYcNAF9DEAPAegcgD4GoEl26ODEzHZrF_6-_b_0A20Vhb8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Abe, Kentaro</creator><creator>Morita, Masahiro</creator><creator>Yano, Hiroyuki</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180801</creationdate><title>Fabrication of optically transparent cotton fiber composite</title><author>Abe, Kentaro ; Morita, Masahiro ; Yano, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-b9b078984376c929be25a6b90e5c7698bc9d623666e56af7900745d93f1b42003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Carboxylation</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Cellulosic resins</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cloth</topic><topic>Composites</topic><topic>Cotton</topic><topic>Cotton (Fiber)</topic><topic>Cotton fibers</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Fiber reinforced plastics</topic><topic>Impregnation</topic><topic>Light transmittance</topic><topic>Materials Science</topic><topic>Nanofibers</topic><topic>Optical fibers</topic><topic>Oxidation</topic><topic>Plant fiber industry</topic><topic>Polymer Sciences</topic><topic>Pretreatment</topic><topic>Solid Mechanics</topic><topic>Swelling</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Kentaro</creatorcontrib><creatorcontrib>Morita, Masahiro</creatorcontrib><creatorcontrib>Yano, Hiroyuki</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Kentaro</au><au>Morita, Masahiro</au><au>Yano, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of optically transparent cotton fiber composite</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>53</volume><issue>15</issue><spage>10872</spage><epage>10878</epage><pages>10872-10878</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this study, we fabricated optically transparent cotton fibers composite by resin impregnation without having to prepare cellulose nanofibers. Although the surface acetylation of the cotton microfibrils aided the resin impregnation process, excess acetylation resulted in the gradual breakdown of the cellulose crystal structure, with the resulting composite showing a high coefficient of thermal expansion (CTE). To prevent this, a swelling pretreatment, namely surface carboxylation by TEMPO-mediated oxidation, was performed to facilitate the surface acetylation of the microfibrils and hence the resin impregnation process. After the swelling pretreatment and the subsequent surface acetylation process, an optically transparent cotton fiber composite with a high regular light transmittance (83.23% at 600 nm) and a low CTE (19.5 ppm/K) was obtained. Finally, when this technique was used with a commercial cotton cloth, a transparent composite with a high total transmittance (88.5% at 600 nm) could be obtained.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2309-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-08, Vol.53 (15), p.10872-10878
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259612479
source Springer Nature - Complete Springer Journals
subjects Acetylation
Carboxylation
Cellulose
Cellulose fibers
Cellulosic resins
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cloth
Composites
Cotton
Cotton (Fiber)
Cotton fibers
Crystal structure
Crystallography and Scattering Methods
Fiber reinforced plastics
Impregnation
Light transmittance
Materials Science
Nanofibers
Optical fibers
Oxidation
Plant fiber industry
Polymer Sciences
Pretreatment
Solid Mechanics
Swelling
Thermal expansion
title Fabrication of optically transparent cotton fiber composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20optically%20transparent%20cotton%20fiber%20composite&rft.jtitle=Journal%20of%20materials%20science&rft.au=Abe,%20Kentaro&rft.date=2018-08-01&rft.volume=53&rft.issue=15&rft.spage=10872&rft.epage=10878&rft.pages=10872-10878&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2309-1&rft_dat=%3Cgale_proqu%3EA538907793%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259612479&rft_id=info:pmid/&rft_galeid=A538907793&rfr_iscdi=true