Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction
The nanostructured heterojunction photocatalysts are considered promising in photocatalytic reduction in the carbon dioxide. Herein, we demonstrate a simple sol–gel and hydrolysis process to design nanostructured TiO 2 /ZnO heterojunction, by using the biological template celery stalk. The nanostruc...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2018-08, Vol.53 (16), p.11595-11606 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11606 |
---|---|
container_issue | 16 |
container_start_page | 11595 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Wu, Keliang Dong, Xuejun Zhu, Junfang Wu, Pengcheng Liu, Chang Wang, Yixi Wu, Jianning Hou, Juan Liu, Zhiyong Guo, Xuhong |
description | The nanostructured heterojunction photocatalysts are considered promising in photocatalytic reduction in the carbon dioxide. Herein, we demonstrate a simple sol–gel and hydrolysis process to design nanostructured TiO
2
/ZnO heterojunction, by using the biological template celery stalk. The nanostructured photocatalyst consists of anatase TiO
2
and wurtzite ZnO nanoparticles. A well-connected heterojunction, with uniformly distributed nanoparticles, on the pores and folds of celery stems, is obtained. The enhanced specific surface area of 55.5 m
2
/g is achieved. The crystal structure, morphology and surface composition are investigated by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Furthermore, we demonstrate the photocatalytic performance of as-synthesized nanostructure TiO
2
/ZnO heterojunction. The photocatalytic yield, of CO
2
reduction into CH
4
, exhibits a five times increase, from 0.55 to 2.56 µmol h
−1
g
−1
, for the nanocomposite as compared to the pure TiO
2
. This enhanced performance corresponds to the efficient charge transfer and hindrance in the recombination of electron–hole pairs due to the optimum band positions of ZnO and TiO
2
. This study demonstrates the potential of using biotemplates to design efficient photocatalysts to convert CO
2
into useful solar fuels. |
doi_str_mv | 10.1007/s10853-018-2397-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259610932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259610932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-13a3cafd222a775a840046d7fc220f9376c6d6a7983caaa5baaee4d9219fd4623</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyWmEOvr5M4YUPlV6qUpSxdLNdxWletHexkyNuTKkhMTHc557vSIeSewSMDEIvIoMh4AqxIkJciGS7IjGWCJ2kB_JLMABATTHN2TW5iPABAJpDNyObFRLtz1u3o1vqTPZnOatr64PtItTmaMDzRta1wsXEVdcp57U-tj7YztPGBGrdXTpuaLiuk7d53Ppi615317pZcNeoYzd3vnZOvt9f18iNZVe-fy-dVonnGu4RxxbVqakRUQmSqSAHSvBaNRoSm5CLXeZ0rURYjplS2VcqYtC6RlU2d5sjn5GHabYP_7k3s5MH3wY0vJWJW5gxKfqbYROngYwymkW2wJxUGyUCeE8opoRwTynNCOYwOTk4cWbcz4W_5f-kHljh0_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259610932</pqid></control><display><type>article</type><title>Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction</title><source>SpringerLink Journals</source><creator>Wu, Keliang ; Dong, Xuejun ; Zhu, Junfang ; Wu, Pengcheng ; Liu, Chang ; Wang, Yixi ; Wu, Jianning ; Hou, Juan ; Liu, Zhiyong ; Guo, Xuhong</creator><creatorcontrib>Wu, Keliang ; Dong, Xuejun ; Zhu, Junfang ; Wu, Pengcheng ; Liu, Chang ; Wang, Yixi ; Wu, Jianning ; Hou, Juan ; Liu, Zhiyong ; Guo, Xuhong</creatorcontrib><description>The nanostructured heterojunction photocatalysts are considered promising in photocatalytic reduction in the carbon dioxide. Herein, we demonstrate a simple sol–gel and hydrolysis process to design nanostructured TiO
2
/ZnO heterojunction, by using the biological template celery stalk. The nanostructured photocatalyst consists of anatase TiO
2
and wurtzite ZnO nanoparticles. A well-connected heterojunction, with uniformly distributed nanoparticles, on the pores and folds of celery stems, is obtained. The enhanced specific surface area of 55.5 m
2
/g is achieved. The crystal structure, morphology and surface composition are investigated by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Furthermore, we demonstrate the photocatalytic performance of as-synthesized nanostructure TiO
2
/ZnO heterojunction. The photocatalytic yield, of CO
2
reduction into CH
4
, exhibits a five times increase, from 0.55 to 2.56 µmol h
−1
g
−1
, for the nanocomposite as compared to the pure TiO
2
. This enhanced performance corresponds to the efficient charge transfer and hindrance in the recombination of electron–hole pairs due to the optimum band positions of ZnO and TiO
2
. This study demonstrates the potential of using biotemplates to design efficient photocatalysts to convert CO
2
into useful solar fuels.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2397-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Biomimetics ; Carbon dioxide ; Celery ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Classical Mechanics ; Crystal structure ; Crystallography and Scattering Methods ; Energy Materials ; Heterojunctions ; Materials Science ; Morphology ; Nanocomposites ; Nanoparticles ; Nanostructure ; Performance enhancement ; Photocatalysis ; Photocatalysts ; Photochemistry ; Photoelectrons ; Polymer Sciences ; Reduction ; Sol-gel processes ; Solid Mechanics ; Titanium dioxide ; Wurtzite ; X-ray diffraction ; Zinc oxide</subject><ispartof>Journal of materials science, 2018-08, Vol.53 (16), p.11595-11606</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-13a3cafd222a775a840046d7fc220f9376c6d6a7983caaa5baaee4d9219fd4623</citedby><cites>FETCH-LOGICAL-c353t-13a3cafd222a775a840046d7fc220f9376c6d6a7983caaa5baaee4d9219fd4623</cites><orcidid>0000-0003-2177-2918 ; 0000-0002-1182-6073 ; 0000-0003-3869-2658 ; 0000-0003-4001-4776 ; 0000-0002-3110-5564 ; 0000-0001-6338-3537 ; 0000-0002-1792-8564 ; 0000-0003-3072-1901 ; 0000-0002-6409-3379 ; 0000-0001-9552-6096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2397-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2397-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Keliang</creatorcontrib><creatorcontrib>Dong, Xuejun</creatorcontrib><creatorcontrib>Zhu, Junfang</creatorcontrib><creatorcontrib>Wu, Pengcheng</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wang, Yixi</creatorcontrib><creatorcontrib>Wu, Jianning</creatorcontrib><creatorcontrib>Hou, Juan</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Xuhong</creatorcontrib><title>Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The nanostructured heterojunction photocatalysts are considered promising in photocatalytic reduction in the carbon dioxide. Herein, we demonstrate a simple sol–gel and hydrolysis process to design nanostructured TiO
2
/ZnO heterojunction, by using the biological template celery stalk. The nanostructured photocatalyst consists of anatase TiO
2
and wurtzite ZnO nanoparticles. A well-connected heterojunction, with uniformly distributed nanoparticles, on the pores and folds of celery stems, is obtained. The enhanced specific surface area of 55.5 m
2
/g is achieved. The crystal structure, morphology and surface composition are investigated by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Furthermore, we demonstrate the photocatalytic performance of as-synthesized nanostructure TiO
2
/ZnO heterojunction. The photocatalytic yield, of CO
2
reduction into CH
4
, exhibits a five times increase, from 0.55 to 2.56 µmol h
−1
g
−1
, for the nanocomposite as compared to the pure TiO
2
. This enhanced performance corresponds to the efficient charge transfer and hindrance in the recombination of electron–hole pairs due to the optimum band positions of ZnO and TiO
2
. This study demonstrates the potential of using biotemplates to design efficient photocatalysts to convert CO
2
into useful solar fuels.</description><subject>Anatase</subject><subject>Biomimetics</subject><subject>Carbon dioxide</subject><subject>Celery</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Energy Materials</subject><subject>Heterojunctions</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Performance enhancement</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photochemistry</subject><subject>Photoelectrons</subject><subject>Polymer Sciences</subject><subject>Reduction</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><subject>Titanium dioxide</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kL1OwzAURi0EEqXwAGyWmEOvr5M4YUPlV6qUpSxdLNdxWletHexkyNuTKkhMTHc557vSIeSewSMDEIvIoMh4AqxIkJciGS7IjGWCJ2kB_JLMABATTHN2TW5iPABAJpDNyObFRLtz1u3o1vqTPZnOatr64PtItTmaMDzRta1wsXEVdcp57U-tj7YztPGBGrdXTpuaLiuk7d53Ppi615317pZcNeoYzd3vnZOvt9f18iNZVe-fy-dVonnGu4RxxbVqakRUQmSqSAHSvBaNRoSm5CLXeZ0rURYjplS2VcqYtC6RlU2d5sjn5GHabYP_7k3s5MH3wY0vJWJW5gxKfqbYROngYwymkW2wJxUGyUCeE8opoRwTynNCOYwOTk4cWbcz4W_5f-kHljh0_g</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wu, Keliang</creator><creator>Dong, Xuejun</creator><creator>Zhu, Junfang</creator><creator>Wu, Pengcheng</creator><creator>Liu, Chang</creator><creator>Wang, Yixi</creator><creator>Wu, Jianning</creator><creator>Hou, Juan</creator><creator>Liu, Zhiyong</creator><creator>Guo, Xuhong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2177-2918</orcidid><orcidid>https://orcid.org/0000-0002-1182-6073</orcidid><orcidid>https://orcid.org/0000-0003-3869-2658</orcidid><orcidid>https://orcid.org/0000-0003-4001-4776</orcidid><orcidid>https://orcid.org/0000-0002-3110-5564</orcidid><orcidid>https://orcid.org/0000-0001-6338-3537</orcidid><orcidid>https://orcid.org/0000-0002-1792-8564</orcidid><orcidid>https://orcid.org/0000-0003-3072-1901</orcidid><orcidid>https://orcid.org/0000-0002-6409-3379</orcidid><orcidid>https://orcid.org/0000-0001-9552-6096</orcidid></search><sort><creationdate>20180801</creationdate><title>Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction</title><author>Wu, Keliang ; Dong, Xuejun ; Zhu, Junfang ; Wu, Pengcheng ; Liu, Chang ; Wang, Yixi ; Wu, Jianning ; Hou, Juan ; Liu, Zhiyong ; Guo, Xuhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-13a3cafd222a775a840046d7fc220f9376c6d6a7983caaa5baaee4d9219fd4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatase</topic><topic>Biomimetics</topic><topic>Carbon dioxide</topic><topic>Celery</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Energy Materials</topic><topic>Heterojunctions</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Performance enhancement</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photochemistry</topic><topic>Photoelectrons</topic><topic>Polymer Sciences</topic><topic>Reduction</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><topic>Titanium dioxide</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Keliang</creatorcontrib><creatorcontrib>Dong, Xuejun</creatorcontrib><creatorcontrib>Zhu, Junfang</creatorcontrib><creatorcontrib>Wu, Pengcheng</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Wang, Yixi</creatorcontrib><creatorcontrib>Wu, Jianning</creatorcontrib><creatorcontrib>Hou, Juan</creatorcontrib><creatorcontrib>Liu, Zhiyong</creatorcontrib><creatorcontrib>Guo, Xuhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Keliang</au><au>Dong, Xuejun</au><au>Zhu, Junfang</au><au>Wu, Pengcheng</au><au>Liu, Chang</au><au>Wang, Yixi</au><au>Wu, Jianning</au><au>Hou, Juan</au><au>Liu, Zhiyong</au><au>Guo, Xuhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>53</volume><issue>16</issue><spage>11595</spage><epage>11606</epage><pages>11595-11606</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The nanostructured heterojunction photocatalysts are considered promising in photocatalytic reduction in the carbon dioxide. Herein, we demonstrate a simple sol–gel and hydrolysis process to design nanostructured TiO
2
/ZnO heterojunction, by using the biological template celery stalk. The nanostructured photocatalyst consists of anatase TiO
2
and wurtzite ZnO nanoparticles. A well-connected heterojunction, with uniformly distributed nanoparticles, on the pores and folds of celery stems, is obtained. The enhanced specific surface area of 55.5 m
2
/g is achieved. The crystal structure, morphology and surface composition are investigated by electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Furthermore, we demonstrate the photocatalytic performance of as-synthesized nanostructure TiO
2
/ZnO heterojunction. The photocatalytic yield, of CO
2
reduction into CH
4
, exhibits a five times increase, from 0.55 to 2.56 µmol h
−1
g
−1
, for the nanocomposite as compared to the pure TiO
2
. This enhanced performance corresponds to the efficient charge transfer and hindrance in the recombination of electron–hole pairs due to the optimum band positions of ZnO and TiO
2
. This study demonstrates the potential of using biotemplates to design efficient photocatalysts to convert CO
2
into useful solar fuels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2397-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2177-2918</orcidid><orcidid>https://orcid.org/0000-0002-1182-6073</orcidid><orcidid>https://orcid.org/0000-0003-3869-2658</orcidid><orcidid>https://orcid.org/0000-0003-4001-4776</orcidid><orcidid>https://orcid.org/0000-0002-3110-5564</orcidid><orcidid>https://orcid.org/0000-0001-6338-3537</orcidid><orcidid>https://orcid.org/0000-0002-1792-8564</orcidid><orcidid>https://orcid.org/0000-0003-3072-1901</orcidid><orcidid>https://orcid.org/0000-0002-6409-3379</orcidid><orcidid>https://orcid.org/0000-0001-9552-6096</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018-08, Vol.53 (16), p.11595-11606 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259610932 |
source | SpringerLink Journals |
subjects | Anatase Biomimetics Carbon dioxide Celery Characterization and Evaluation of Materials Charge transfer Chemistry and Materials Science Classical Mechanics Crystal structure Crystallography and Scattering Methods Energy Materials Heterojunctions Materials Science Morphology Nanocomposites Nanoparticles Nanostructure Performance enhancement Photocatalysis Photocatalysts Photochemistry Photoelectrons Polymer Sciences Reduction Sol-gel processes Solid Mechanics Titanium dioxide Wurtzite X-ray diffraction Zinc oxide |
title | Designing biomimetic porous celery: TiO2/ZnO nanocomposite for enhanced CO2 photoreduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20biomimetic%20porous%20celery:%20TiO2/ZnO%20nanocomposite%20for%20enhanced%20CO2%20photoreduction&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wu,%20Keliang&rft.date=2018-08-01&rft.volume=53&rft.issue=16&rft.spage=11595&rft.epage=11606&rft.pages=11595-11606&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2397-y&rft_dat=%3Cproquest_cross%3E2259610932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259610932&rft_id=info:pmid/&rfr_iscdi=true |