Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation
The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2018-02, Vol.53 (3), p.2115-2126 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2126 |
---|---|
container_issue | 3 |
container_start_page | 2115 |
container_title | Journal of materials science |
container_volume | 53 |
creator | Chen, Yongxiang Li, Puliang Li, Yunjiao Su, Qianye Xue, Longlong Han, Qiang Cao, Guoling Li, Jianguo |
description | The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni
0.5
Co
0.2
Mn
0.3
(OH)
2
precursor but has a typical
α
-NaFeO
2
-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg
−1
at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg
−1
at 8 C, which are attributed to the low polarization, fast Li
+
diffusion and small charge–discharge resistance of the as-prepared material upon cycling. |
doi_str_mv | 10.1007/s10853-017-1645-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259608941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259608941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</originalsourceid><addsrcrecordid>eNp1kDtPIzEURq0VSBtYfsB2lrZ2uNeeZ7mKeEmBNGxteew7GaPJOOsxCCr-OoYgUVHd5pzvSoex3whLBKjPZ4SmVAKwFlgVpXj-wRZY1koUDagjtgCQUsiiwp_sZJ4fAKCsJS7Y68U0mMn6acvTQHzw20E8hTGZLXEayaYY7EA7b83I9xT7EHcZJx76D37t7zwsy1WApbydYKk2kluThuCI70yi6M048ydv-PDiYshK9kc--jR4k3yYfrHjPiN09nlP2b_Li_vVtVhvrm5Wf9fCqlIloUhVrumwkaScldZ1jlrZubqrTWsN1oVpsekLgAJdB6YqasCKsHGY_apXp-zPYXcfw_9HmpN-CI9xyi-1lGVbQdMWmCk8UDaGeY7U6330OxNfNIJ-76wPnXXurN876-fsyIMzZ3baUvxa_l56AyfLgWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259608941</pqid></control><display><type>article</type><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><source>Springer Online Journals</source><creator>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</creator><creatorcontrib>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</creatorcontrib><description>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni
0.5
Co
0.2
Mn
0.3
(OH)
2
precursor but has a typical
α
-NaFeO
2
-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg
−1
at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg
−1
at 8 C, which are attributed to the low polarization, fast Li
+
diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1645-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Diffusion rate ; Electric potential ; Electrochemical analysis ; Electrode materials ; Electrode polarization ; Energy Materials ; Heat treatment ; High voltages ; Materials Science ; Metal oxides ; Morphology ; Organic chemistry ; Polymer Sciences ; Precursors ; Solid Mechanics ; Transition metal oxides ; Transition metals</subject><ispartof>Journal of materials science, 2018-02, Vol.53 (3), p.2115-2126</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</citedby><cites>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1645-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1645-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chen, Yongxiang</creatorcontrib><creatorcontrib>Li, Puliang</creatorcontrib><creatorcontrib>Li, Yunjiao</creatorcontrib><creatorcontrib>Su, Qianye</creatorcontrib><creatorcontrib>Xue, Longlong</creatorcontrib><creatorcontrib>Han, Qiang</creatorcontrib><creatorcontrib>Cao, Guoling</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni
0.5
Co
0.2
Mn
0.3
(OH)
2
precursor but has a typical
α
-NaFeO
2
-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg
−1
at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg
−1
at 8 C, which are attributed to the low polarization, fast Li
+
diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</description><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion rate</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Energy Materials</subject><subject>Heat treatment</subject><subject>High voltages</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Solid Mechanics</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDtPIzEURq0VSBtYfsB2lrZ2uNeeZ7mKeEmBNGxteew7GaPJOOsxCCr-OoYgUVHd5pzvSoex3whLBKjPZ4SmVAKwFlgVpXj-wRZY1koUDagjtgCQUsiiwp_sZJ4fAKCsJS7Y68U0mMn6acvTQHzw20E8hTGZLXEayaYY7EA7b83I9xT7EHcZJx76D37t7zwsy1WApbydYKk2kluThuCI70yi6M048ydv-PDiYshK9kc--jR4k3yYfrHjPiN09nlP2b_Li_vVtVhvrm5Wf9fCqlIloUhVrumwkaScldZ1jlrZubqrTWsN1oVpsekLgAJdB6YqasCKsHGY_apXp-zPYXcfw_9HmpN-CI9xyi-1lGVbQdMWmCk8UDaGeY7U6330OxNfNIJ-76wPnXXurN876-fsyIMzZ3baUvxa_l56AyfLgWs</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Chen, Yongxiang</creator><creator>Li, Puliang</creator><creator>Li, Yunjiao</creator><creator>Su, Qianye</creator><creator>Xue, Longlong</creator><creator>Han, Qiang</creator><creator>Cao, Guoling</creator><creator>Li, Jianguo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180201</creationdate><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><author>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion rate</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Energy Materials</topic><topic>Heat treatment</topic><topic>High voltages</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Solid Mechanics</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongxiang</creatorcontrib><creatorcontrib>Li, Puliang</creatorcontrib><creatorcontrib>Li, Yunjiao</creatorcontrib><creatorcontrib>Su, Qianye</creatorcontrib><creatorcontrib>Xue, Longlong</creatorcontrib><creatorcontrib>Han, Qiang</creatorcontrib><creatorcontrib>Cao, Guoling</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongxiang</au><au>Li, Puliang</au><au>Li, Yunjiao</au><au>Su, Qianye</au><au>Xue, Longlong</au><au>Han, Qiang</au><au>Cao, Guoling</au><au>Li, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>2115</spage><epage>2126</epage><pages>2115-2126</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni
0.5
Co
0.2
Mn
0.3
(OH)
2
precursor but has a typical
α
-NaFeO
2
-type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi
0.5
Co
0.2
Mn
0.3
O
2
cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg
−1
at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg
−1
at 8 C, which are attributed to the low polarization, fast Li
+
diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1645-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2018-02, Vol.53 (3), p.2115-2126 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259608941 |
source | Springer Online Journals |
subjects | Cathodes Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Diffusion rate Electric potential Electrochemical analysis Electrode materials Electrode polarization Energy Materials Heat treatment High voltages Materials Science Metal oxides Morphology Organic chemistry Polymer Sciences Precursors Solid Mechanics Transition metal oxides Transition metals |
title | Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20high-voltage%20electrochemical%20performance%20of%20the%20LiNi0.5Co0.2Mn0.3O2%20cathode%20materials%20via%20hydrothermal%20lithiation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Chen,%20Yongxiang&rft.date=2018-02-01&rft.volume=53&rft.issue=3&rft.spage=2115&rft.epage=2126&rft.pages=2115-2126&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1645-x&rft_dat=%3Cproquest_cross%3E2259608941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259608941&rft_id=info:pmid/&rfr_iscdi=true |