Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation

The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-02, Vol.53 (3), p.2115-2126
Hauptverfasser: Chen, Yongxiang, Li, Puliang, Li, Yunjiao, Su, Qianye, Xue, Longlong, Han, Qiang, Cao, Guoling, Li, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2126
container_issue 3
container_start_page 2115
container_title Journal of materials science
container_volume 53
creator Chen, Yongxiang
Li, Puliang
Li, Yunjiao
Su, Qianye
Xue, Longlong
Han, Qiang
Cao, Guoling
Li, Jianguo
description The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor but has a typical α -NaFeO 2 -type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg −1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg −1 at 8 C, which are attributed to the low polarization, fast Li + diffusion and small charge–discharge resistance of the as-prepared material upon cycling.
doi_str_mv 10.1007/s10853-017-1645-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259608941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259608941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</originalsourceid><addsrcrecordid>eNp1kDtPIzEURq0VSBtYfsB2lrZ2uNeeZ7mKeEmBNGxteew7GaPJOOsxCCr-OoYgUVHd5pzvSoex3whLBKjPZ4SmVAKwFlgVpXj-wRZY1koUDagjtgCQUsiiwp_sZJ4fAKCsJS7Y68U0mMn6acvTQHzw20E8hTGZLXEayaYY7EA7b83I9xT7EHcZJx76D37t7zwsy1WApbydYKk2kluThuCI70yi6M048ydv-PDiYshK9kc--jR4k3yYfrHjPiN09nlP2b_Li_vVtVhvrm5Wf9fCqlIloUhVrumwkaScldZ1jlrZubqrTWsN1oVpsekLgAJdB6YqasCKsHGY_apXp-zPYXcfw_9HmpN-CI9xyi-1lGVbQdMWmCk8UDaGeY7U6330OxNfNIJ-76wPnXXurN876-fsyIMzZ3baUvxa_l56AyfLgWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259608941</pqid></control><display><type>article</type><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><source>Springer Online Journals</source><creator>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</creator><creatorcontrib>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</creatorcontrib><description>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor but has a typical α -NaFeO 2 -type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg −1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg −1 at 8 C, which are attributed to the low polarization, fast Li + diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-017-1645-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cathodes ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Diffusion rate ; Electric potential ; Electrochemical analysis ; Electrode materials ; Electrode polarization ; Energy Materials ; Heat treatment ; High voltages ; Materials Science ; Metal oxides ; Morphology ; Organic chemistry ; Polymer Sciences ; Precursors ; Solid Mechanics ; Transition metal oxides ; Transition metals</subject><ispartof>Journal of materials science, 2018-02, Vol.53 (3), p.2115-2126</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Journal of Materials Science is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</citedby><cites>FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-017-1645-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-017-1645-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chen, Yongxiang</creatorcontrib><creatorcontrib>Li, Puliang</creatorcontrib><creatorcontrib>Li, Yunjiao</creatorcontrib><creatorcontrib>Su, Qianye</creatorcontrib><creatorcontrib>Xue, Longlong</creatorcontrib><creatorcontrib>Han, Qiang</creatorcontrib><creatorcontrib>Cao, Guoling</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor but has a typical α -NaFeO 2 -type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg −1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg −1 at 8 C, which are attributed to the low polarization, fast Li + diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</description><subject>Cathodes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion rate</subject><subject>Electric potential</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Energy Materials</subject><subject>Heat treatment</subject><subject>High voltages</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Polymer Sciences</subject><subject>Precursors</subject><subject>Solid Mechanics</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDtPIzEURq0VSBtYfsB2lrZ2uNeeZ7mKeEmBNGxteew7GaPJOOsxCCr-OoYgUVHd5pzvSoex3whLBKjPZ4SmVAKwFlgVpXj-wRZY1koUDagjtgCQUsiiwp_sZJ4fAKCsJS7Y68U0mMn6acvTQHzw20E8hTGZLXEayaYY7EA7b83I9xT7EHcZJx76D37t7zwsy1WApbydYKk2kluThuCI70yi6M048ydv-PDiYshK9kc--jR4k3yYfrHjPiN09nlP2b_Li_vVtVhvrm5Wf9fCqlIloUhVrumwkaScldZ1jlrZubqrTWsN1oVpsekLgAJdB6YqasCKsHGY_apXp-zPYXcfw_9HmpN-CI9xyi-1lGVbQdMWmCk8UDaGeY7U6330OxNfNIJ-76wPnXXurN876-fsyIMzZ3baUvxa_l56AyfLgWs</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Chen, Yongxiang</creator><creator>Li, Puliang</creator><creator>Li, Yunjiao</creator><creator>Su, Qianye</creator><creator>Xue, Longlong</creator><creator>Han, Qiang</creator><creator>Cao, Guoling</creator><creator>Li, Jianguo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180201</creationdate><title>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</title><author>Chen, Yongxiang ; Li, Puliang ; Li, Yunjiao ; Su, Qianye ; Xue, Longlong ; Han, Qiang ; Cao, Guoling ; Li, Jianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3e36d8b182e3dc2cdbde92bd7b7a9ca174a918f40041db0a647016e18d13536f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion rate</topic><topic>Electric potential</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Energy Materials</topic><topic>Heat treatment</topic><topic>High voltages</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Polymer Sciences</topic><topic>Precursors</topic><topic>Solid Mechanics</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongxiang</creatorcontrib><creatorcontrib>Li, Puliang</creatorcontrib><creatorcontrib>Li, Yunjiao</creatorcontrib><creatorcontrib>Su, Qianye</creatorcontrib><creatorcontrib>Xue, Longlong</creatorcontrib><creatorcontrib>Han, Qiang</creatorcontrib><creatorcontrib>Cao, Guoling</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongxiang</au><au>Li, Puliang</au><au>Li, Yunjiao</au><au>Su, Qianye</au><au>Xue, Longlong</au><au>Han, Qiang</au><au>Cao, Guoling</au><au>Li, Jianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>53</volume><issue>3</issue><spage>2115</spage><epage>2126</epage><pages>2115-2126</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The chemical lithiated transition metal oxide precursor has been prepared via a hydrothermal process and successfully used for preparing the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials by the post-heat treatment. The results indicate that the lithiated transition metal oxide precursor inherits the morphology of the Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 precursor but has a typical α -NaFeO 2 -type (space group: R-3 m) layered structure with an imperfect crystallinity, and the Li is homogenously distributed in the particles. It is further confirmed that the obtained LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material has a suppressed cation mixing resulting in an excellent electrochemical performance. It delivers the high initial capacity of 187.3 mAhg −1 at 1 C over the high cutoff voltage range of 3.0–4.6 V and the excellent capacity retention of 81.90% after 100 cycles as well as the rate capability of 152.3 mAhg −1 at 8 C, which are attributed to the low polarization, fast Li + diffusion and small charge–discharge resistance of the as-prepared material upon cycling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-017-1645-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-02, Vol.53 (3), p.2115-2126
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2259608941
source Springer Online Journals
subjects Cathodes
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Diffusion rate
Electric potential
Electrochemical analysis
Electrode materials
Electrode polarization
Energy Materials
Heat treatment
High voltages
Materials Science
Metal oxides
Morphology
Organic chemistry
Polymer Sciences
Precursors
Solid Mechanics
Transition metal oxides
Transition metals
title Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20high-voltage%20electrochemical%20performance%20of%20the%20LiNi0.5Co0.2Mn0.3O2%20cathode%20materials%20via%20hydrothermal%20lithiation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Chen,%20Yongxiang&rft.date=2018-02-01&rft.volume=53&rft.issue=3&rft.spage=2115&rft.epage=2126&rft.pages=2115-2126&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-017-1645-x&rft_dat=%3Cproquest_cross%3E2259608941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259608941&rft_id=info:pmid/&rfr_iscdi=true