Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2
Hydroxyapatite (HAp) powders were prepared successfully using microwave-assisted co-precipitation method. HAp powder was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy for structural confirmation of the prepared material. Further, six...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2016-05, Vol.51 (10), p.4973-4983 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4983 |
---|---|
container_issue | 10 |
container_start_page | 4973 |
container_title | Journal of materials science |
container_volume | 51 |
creator | Gautam, C. R. Tamuk, M. Manpoong, C. W. Gautam, S. S. Kumar, Sunil Singh, Anod Kumar Mishra, V. K. |
description | Hydroxyapatite (HAp) powders were prepared successfully using microwave-assisted co-precipitation method. HAp powder was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy for structural confirmation of the prepared material. Further, six composites of HAp with SrCO₃ and ZrO₂ were synthesized to study the morphological and tribological behaviour. Three composites of HAp with three varying 2, 4, 6 wt% of SrCO₃ and similarly other three with ZrO₂ were prepared using solid-state route method. Scanning electron microscopy (SEM) analysis confirmed that the presence of SrCO₃ and ZrO₂ among HAp particles helps in grain growth during the sintering processes. The tribological study reveald that the inclusion of SrCO₃ and ZrO₂ in pure HAp enhanced the resistance to wear and specific wear rate. The average grain size of HAp–ZrO₂ was observed more in comparision to the average grain size of the HAp–SrCO₃. The values of the specific wear rate and wear of HAp–SrCO₃ and HAp–ZrO₂ composite ceramics lies in the range from 4.13,239 × 10⁻⁵ to 5.44517 × 10⁻⁵ mm³/Nm and 4.68693 × 10⁻⁵ to 6.10099 × 10⁻⁵ mm³/Nm, respectively. |
doi_str_mv | 10.1007/s10853-016-9802-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259599859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259599859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-6792b3c1eec0d3501b38f355f9111cb6586f9f0176025ae33ecbf6a15a9d54623</originalsourceid><addsrcrecordid>eNp9kMFuGyEQQFGVSnWcfkBPRcp5kxkw7HKsrLSN5MiHJJdeEMuCjWUbF3AT_32Jt1JvOYzm8t6M9Aj5gnCDAO1tRugEbwBlozpgDX4gExQtb2Yd8AsyAWCsYTOJn8hlzhsAEC3DCYkPwab4Yv44mk_7snY5ZBo9XZ-GFF9P5mBKKI72IVqXzC5YavYDLSn0cRtXwZotzeU4BHe2QsnUxt0h5ipl-hLKmj6m-ZKfrV9pya7IR2-22X3-t6fk-fvd0_xns1j-uJ9_WzR2hlAa2SrWc4vOWRi4AOx557kQXiGi7aXopFcesJXAhHGcO9t7aVAYNYiZZHxKrse7hxR_H10uehOPaV9fasaEEkp1QlUKR6o2yDk5rw8p7Ew6aQT91lWPXXXtqt-6aqwOG51c2f3Kpf-X35O-jpI3UZtVClk_P7IKQJ22bSX_Cw3ihLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259599859</pqid></control><display><type>article</type><title>Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2</title><source>Springer Nature - Complete Springer Journals</source><creator>Gautam, C. R. ; Tamuk, M. ; Manpoong, C. W. ; Gautam, S. S. ; Kumar, Sunil ; Singh, Anod Kumar ; Mishra, V. K.</creator><creatorcontrib>Gautam, C. R. ; Tamuk, M. ; Manpoong, C. W. ; Gautam, S. S. ; Kumar, Sunil ; Singh, Anod Kumar ; Mishra, V. K.</creatorcontrib><description>Hydroxyapatite (HAp) powders were prepared successfully using microwave-assisted co-precipitation method. HAp powder was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy for structural confirmation of the prepared material. Further, six composites of HAp with SrCO₃ and ZrO₂ were synthesized to study the morphological and tribological behaviour. Three composites of HAp with three varying 2, 4, 6 wt% of SrCO₃ and similarly other three with ZrO₂ were prepared using solid-state route method. Scanning electron microscopy (SEM) analysis confirmed that the presence of SrCO₃ and ZrO₂ among HAp particles helps in grain growth during the sintering processes. The tribological study reveald that the inclusion of SrCO₃ and ZrO₂ in pure HAp enhanced the resistance to wear and specific wear rate. The average grain size of HAp–ZrO₂ was observed more in comparision to the average grain size of the HAp–SrCO₃. The values of the specific wear rate and wear of HAp–SrCO₃ and HAp–ZrO₂ composite ceramics lies in the range from 4.13,239 × 10⁻⁵ to 5.44517 × 10⁻⁵ mm³/Nm and 4.68693 × 10⁻⁵ to 6.10099 × 10⁻⁵ mm³/Nm, respectively.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-9802-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Crystallography and Scattering Methods ; Fourier transforms ; Grain growth ; Grain size ; Hydroxyapatite ; Infrared spectroscopy ; Materials Science ; Original Paper ; Polymer Sciences ; Raman spectroscopy ; Scanning electron microscopy ; Sintering (powder metallurgy) ; Solid Mechanics ; Spectrum analysis ; Strontium carbonate ; Tribology ; Wear rate ; Wear resistance ; X-ray diffraction ; Zirconium dioxide</subject><ispartof>Journal of materials science, 2016-05, Vol.51 (10), p.4973-4983</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-6792b3c1eec0d3501b38f355f9111cb6586f9f0176025ae33ecbf6a15a9d54623</citedby><cites>FETCH-LOGICAL-c410t-6792b3c1eec0d3501b38f355f9111cb6586f9f0176025ae33ecbf6a15a9d54623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-9802-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-9802-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Gautam, C. R.</creatorcontrib><creatorcontrib>Tamuk, M.</creatorcontrib><creatorcontrib>Manpoong, C. W.</creatorcontrib><creatorcontrib>Gautam, S. S.</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Singh, Anod Kumar</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><title>Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Hydroxyapatite (HAp) powders were prepared successfully using microwave-assisted co-precipitation method. HAp powder was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy for structural confirmation of the prepared material. Further, six composites of HAp with SrCO₃ and ZrO₂ were synthesized to study the morphological and tribological behaviour. Three composites of HAp with three varying 2, 4, 6 wt% of SrCO₃ and similarly other three with ZrO₂ were prepared using solid-state route method. Scanning electron microscopy (SEM) analysis confirmed that the presence of SrCO₃ and ZrO₂ among HAp particles helps in grain growth during the sintering processes. The tribological study reveald that the inclusion of SrCO₃ and ZrO₂ in pure HAp enhanced the resistance to wear and specific wear rate. The average grain size of HAp–ZrO₂ was observed more in comparision to the average grain size of the HAp–SrCO₃. The values of the specific wear rate and wear of HAp–SrCO₃ and HAp–ZrO₂ composite ceramics lies in the range from 4.13,239 × 10⁻⁵ to 5.44517 × 10⁻⁵ mm³/Nm and 4.68693 × 10⁻⁵ to 6.10099 × 10⁻⁵ mm³/Nm, respectively.</description><subject>Bioceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Crystallography and Scattering Methods</subject><subject>Fourier transforms</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Hydroxyapatite</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Original Paper</subject><subject>Polymer Sciences</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Strontium carbonate</subject><subject>Tribology</subject><subject>Wear rate</subject><subject>Wear resistance</subject><subject>X-ray diffraction</subject><subject>Zirconium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFuGyEQQFGVSnWcfkBPRcp5kxkw7HKsrLSN5MiHJJdeEMuCjWUbF3AT_32Jt1JvOYzm8t6M9Aj5gnCDAO1tRugEbwBlozpgDX4gExQtb2Yd8AsyAWCsYTOJn8hlzhsAEC3DCYkPwab4Yv44mk_7snY5ZBo9XZ-GFF9P5mBKKI72IVqXzC5YavYDLSn0cRtXwZotzeU4BHe2QsnUxt0h5ipl-hLKmj6m-ZKfrV9pya7IR2-22X3-t6fk-fvd0_xns1j-uJ9_WzR2hlAa2SrWc4vOWRi4AOx557kQXiGi7aXopFcesJXAhHGcO9t7aVAYNYiZZHxKrse7hxR_H10uehOPaV9fasaEEkp1QlUKR6o2yDk5rw8p7Ew6aQT91lWPXXXtqt-6aqwOG51c2f3Kpf-X35O-jpI3UZtVClk_P7IKQJ22bSX_Cw3ihLQ</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gautam, C. R.</creator><creator>Tamuk, M.</creator><creator>Manpoong, C. W.</creator><creator>Gautam, S. S.</creator><creator>Kumar, Sunil</creator><creator>Singh, Anod Kumar</creator><creator>Mishra, V. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160501</creationdate><title>Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2</title><author>Gautam, C. R. ; Tamuk, M. ; Manpoong, C. W. ; Gautam, S. S. ; Kumar, Sunil ; Singh, Anod Kumar ; Mishra, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-6792b3c1eec0d3501b38f355f9111cb6586f9f0176025ae33ecbf6a15a9d54623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Crystallography and Scattering Methods</topic><topic>Fourier transforms</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Hydroxyapatite</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Original Paper</topic><topic>Polymer Sciences</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Strontium carbonate</topic><topic>Tribology</topic><topic>Wear rate</topic><topic>Wear resistance</topic><topic>X-ray diffraction</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautam, C. R.</creatorcontrib><creatorcontrib>Tamuk, M.</creatorcontrib><creatorcontrib>Manpoong, C. W.</creatorcontrib><creatorcontrib>Gautam, S. S.</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Singh, Anod Kumar</creatorcontrib><creatorcontrib>Mishra, V. K.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautam, C. R.</au><au>Tamuk, M.</au><au>Manpoong, C. W.</au><au>Gautam, S. S.</au><au>Kumar, Sunil</au><au>Singh, Anod Kumar</au><au>Mishra, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>51</volume><issue>10</issue><spage>4973</spage><epage>4983</epage><pages>4973-4983</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Hydroxyapatite (HAp) powders were prepared successfully using microwave-assisted co-precipitation method. HAp powder was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy for structural confirmation of the prepared material. Further, six composites of HAp with SrCO₃ and ZrO₂ were synthesized to study the morphological and tribological behaviour. Three composites of HAp with three varying 2, 4, 6 wt% of SrCO₃ and similarly other three with ZrO₂ were prepared using solid-state route method. Scanning electron microscopy (SEM) analysis confirmed that the presence of SrCO₃ and ZrO₂ among HAp particles helps in grain growth during the sintering processes. The tribological study reveald that the inclusion of SrCO₃ and ZrO₂ in pure HAp enhanced the resistance to wear and specific wear rate. The average grain size of HAp–ZrO₂ was observed more in comparision to the average grain size of the HAp–SrCO₃. The values of the specific wear rate and wear of HAp–SrCO₃ and HAp–ZrO₂ composite ceramics lies in the range from 4.13,239 × 10⁻⁵ to 5.44517 × 10⁻⁵ mm³/Nm and 4.68693 × 10⁻⁵ to 6.10099 × 10⁻⁵ mm³/Nm, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-9802-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2016-05, Vol.51 (10), p.4973-4983 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2259599859 |
source | Springer Nature - Complete Springer Journals |
subjects | Bioceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Crystallography and Scattering Methods Fourier transforms Grain growth Grain size Hydroxyapatite Infrared spectroscopy Materials Science Original Paper Polymer Sciences Raman spectroscopy Scanning electron microscopy Sintering (powder metallurgy) Solid Mechanics Spectrum analysis Strontium carbonate Tribology Wear rate Wear resistance X-ray diffraction Zirconium dioxide |
title | Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO3 and ZrO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20synthesis%20of%20hydroxyapatite%20bioceramic%20and%20tribological%20studies%20of%20its%20composites%20with%20SrCO3%20and%20ZrO2&rft.jtitle=Journal%20of%20materials%20science&rft.au=Gautam,%20C.%20R.&rft.date=2016-05-01&rft.volume=51&rft.issue=10&rft.spage=4973&rft.epage=4983&rft.pages=4973-4983&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-9802-1&rft_dat=%3Cproquest_cross%3E2259599859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259599859&rft_id=info:pmid/&rfr_iscdi=true |