A W-Band MMIC Radar System for Remote Detection of Vital Signs

In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267
Hauptverfasser: Diebold, Sebastian, Ayhan, Serdal, Scherr, Steffen, Massler, Hermann, Tessmann, Axel, Leuther, Arnulf, Ambacher, Oliver, Zwick, Thomas, Kallfass, Ingmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1267
container_issue 12
container_start_page 1250
container_title Journal of infrared, millimeter and terahertz waves
container_volume 33
creator Diebold, Sebastian
Ayhan, Serdal
Scherr, Steffen
Massler, Hermann
Tessmann, Axel
Leuther, Arnulf
Ambacher, Oliver
Zwick, Thomas
Kallfass, Ingmar
description In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.
doi_str_mv 10.1007/s10762-012-9941-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259599843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259599843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7Cabi1DrV6FFaP04hjSblC3tRpP00H_vllU8eZo5vM87w4PQJdBroFTeJKBSMEKBEaUKIPIIDaASgghFxfHvXil2is5SWlMqikKJAbod4Q9yZ9oaz2aTMZ6b2kS82KfsttiHiOduG7LD9y47m5vQ4uDxe5PNBi-aVZvO0Yk3m-QufuYQvT0-vI6fyfTlaTIeTYnlIDKR0krua14Wji6XdWms494yIS14MBVIr7zwJYjuTQ8WhFJLa5hVgjPnFfAhuup7P2P42rmU9TrsYtud1IyVqlSqKniXgj5lY0gpOq8_Y7M1ca-B6oMm3WvSnSZ90KRlx7CeSV22Xbn41_w_9A3S52gv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259599843</pqid></control><display><type>article</type><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</creator><creatorcontrib>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</creatorcontrib><description>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</description><identifier>ISSN: 1866-6892</identifier><identifier>EISSN: 1866-6906</identifier><identifier>DOI: 10.1007/s10762-012-9941-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Classical Electrodynamics ; Continuous radiation ; Electrical Engineering ; Electron mobility ; Electronics and Microelectronics ; Engineering ; Frequency multipliers ; High electron mobility transistors ; Instrumentation ; Integrated circuits ; Millimeter waves ; MMIC (circuits) ; Pain ; Radar detection ; Radar equipment ; Radar systems ; Remote monitoring ; Semiconductor devices</subject><ispartof>Journal of infrared, millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</citedby><cites>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10762-012-9941-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10762-012-9941-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Diebold, Sebastian</creatorcontrib><creatorcontrib>Ayhan, Serdal</creatorcontrib><creatorcontrib>Scherr, Steffen</creatorcontrib><creatorcontrib>Massler, Hermann</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Kallfass, Ingmar</creatorcontrib><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><title>Journal of infrared, millimeter and terahertz waves</title><addtitle>J Infrared Milli Terahz Waves</addtitle><description>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</description><subject>Classical Electrodynamics</subject><subject>Continuous radiation</subject><subject>Electrical Engineering</subject><subject>Electron mobility</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Frequency multipliers</subject><subject>High electron mobility transistors</subject><subject>Instrumentation</subject><subject>Integrated circuits</subject><subject>Millimeter waves</subject><subject>MMIC (circuits)</subject><subject>Pain</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Radar systems</subject><subject>Remote monitoring</subject><subject>Semiconductor devices</subject><issn>1866-6892</issn><issn>1866-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7Cabi1DrV6FFaP04hjSblC3tRpP00H_vllU8eZo5vM87w4PQJdBroFTeJKBSMEKBEaUKIPIIDaASgghFxfHvXil2is5SWlMqikKJAbod4Q9yZ9oaz2aTMZ6b2kS82KfsttiHiOduG7LD9y47m5vQ4uDxe5PNBi-aVZvO0Yk3m-QufuYQvT0-vI6fyfTlaTIeTYnlIDKR0krua14Wji6XdWms494yIS14MBVIr7zwJYjuTQ8WhFJLa5hVgjPnFfAhuup7P2P42rmU9TrsYtud1IyVqlSqKniXgj5lY0gpOq8_Y7M1ca-B6oMm3WvSnSZ90KRlx7CeSV22Xbn41_w_9A3S52gv</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Diebold, Sebastian</creator><creator>Ayhan, Serdal</creator><creator>Scherr, Steffen</creator><creator>Massler, Hermann</creator><creator>Tessmann, Axel</creator><creator>Leuther, Arnulf</creator><creator>Ambacher, Oliver</creator><creator>Zwick, Thomas</creator><creator>Kallfass, Ingmar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20121201</creationdate><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><author>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical Electrodynamics</topic><topic>Continuous radiation</topic><topic>Electrical Engineering</topic><topic>Electron mobility</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Frequency multipliers</topic><topic>High electron mobility transistors</topic><topic>Instrumentation</topic><topic>Integrated circuits</topic><topic>Millimeter waves</topic><topic>MMIC (circuits)</topic><topic>Pain</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Radar systems</topic><topic>Remote monitoring</topic><topic>Semiconductor devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Sebastian</creatorcontrib><creatorcontrib>Ayhan, Serdal</creatorcontrib><creatorcontrib>Scherr, Steffen</creatorcontrib><creatorcontrib>Massler, Hermann</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Kallfass, Ingmar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Sebastian</au><au>Ayhan, Serdal</au><au>Scherr, Steffen</au><au>Massler, Hermann</au><au>Tessmann, Axel</au><au>Leuther, Arnulf</au><au>Ambacher, Oliver</au><au>Zwick, Thomas</au><au>Kallfass, Ingmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A W-Band MMIC Radar System for Remote Detection of Vital Signs</atitle><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle><stitle>J Infrared Milli Terahz Waves</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>33</volume><issue>12</issue><spage>1250</spage><epage>1267</epage><pages>1250-1267</pages><issn>1866-6892</issn><eissn>1866-6906</eissn><abstract>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10762-012-9941-7</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6892
ispartof Journal of infrared, millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267
issn 1866-6892
1866-6906
language eng
recordid cdi_proquest_journals_2259599843
source SpringerLink Journals - AutoHoldings
subjects Classical Electrodynamics
Continuous radiation
Electrical Engineering
Electron mobility
Electronics and Microelectronics
Engineering
Frequency multipliers
High electron mobility transistors
Instrumentation
Integrated circuits
Millimeter waves
MMIC (circuits)
Pain
Radar detection
Radar equipment
Radar systems
Remote monitoring
Semiconductor devices
title A W-Band MMIC Radar System for Remote Detection of Vital Signs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20W-Band%20MMIC%20Radar%20System%20for%20Remote%20Detection%20of%20Vital%20Signs&rft.jtitle=Journal%20of%20infrared,%20millimeter%20and%20terahertz%20waves&rft.au=Diebold,%20Sebastian&rft.date=2012-12-01&rft.volume=33&rft.issue=12&rft.spage=1250&rft.epage=1267&rft.pages=1250-1267&rft.issn=1866-6892&rft.eissn=1866-6906&rft_id=info:doi/10.1007/s10762-012-9941-7&rft_dat=%3Cproquest_cross%3E2259599843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259599843&rft_id=info:pmid/&rfr_iscdi=true