A W-Band MMIC Radar System for Remote Detection of Vital Signs
In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven...
Gespeichert in:
Veröffentlicht in: | Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1267 |
---|---|
container_issue | 12 |
container_start_page | 1250 |
container_title | Journal of infrared, millimeter and terahertz waves |
container_volume | 33 |
creator | Diebold, Sebastian Ayhan, Serdal Scherr, Steffen Massler, Hermann Tessmann, Axel Leuther, Arnulf Ambacher, Oliver Zwick, Thomas Kallfass, Ingmar |
description | In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks. |
doi_str_mv | 10.1007/s10762-012-9941-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259599843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259599843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7Cabi1DrV6FFaP04hjSblC3tRpP00H_vllU8eZo5vM87w4PQJdBroFTeJKBSMEKBEaUKIPIIDaASgghFxfHvXil2is5SWlMqikKJAbod4Q9yZ9oaz2aTMZ6b2kS82KfsttiHiOduG7LD9y47m5vQ4uDxe5PNBi-aVZvO0Yk3m-QufuYQvT0-vI6fyfTlaTIeTYnlIDKR0krua14Wji6XdWms494yIS14MBVIr7zwJYjuTQ8WhFJLa5hVgjPnFfAhuup7P2P42rmU9TrsYtud1IyVqlSqKniXgj5lY0gpOq8_Y7M1ca-B6oMm3WvSnSZ90KRlx7CeSV22Xbn41_w_9A3S52gv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259599843</pqid></control><display><type>article</type><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</creator><creatorcontrib>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</creatorcontrib><description>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</description><identifier>ISSN: 1866-6892</identifier><identifier>EISSN: 1866-6906</identifier><identifier>DOI: 10.1007/s10762-012-9941-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Classical Electrodynamics ; Continuous radiation ; Electrical Engineering ; Electron mobility ; Electronics and Microelectronics ; Engineering ; Frequency multipliers ; High electron mobility transistors ; Instrumentation ; Integrated circuits ; Millimeter waves ; MMIC (circuits) ; Pain ; Radar detection ; Radar equipment ; Radar systems ; Remote monitoring ; Semiconductor devices</subject><ispartof>Journal of infrared, millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Journal of Infrared, Millimeter, and Terahertz Waves is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</citedby><cites>FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10762-012-9941-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10762-012-9941-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Diebold, Sebastian</creatorcontrib><creatorcontrib>Ayhan, Serdal</creatorcontrib><creatorcontrib>Scherr, Steffen</creatorcontrib><creatorcontrib>Massler, Hermann</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Kallfass, Ingmar</creatorcontrib><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><title>Journal of infrared, millimeter and terahertz waves</title><addtitle>J Infrared Milli Terahz Waves</addtitle><description>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</description><subject>Classical Electrodynamics</subject><subject>Continuous radiation</subject><subject>Electrical Engineering</subject><subject>Electron mobility</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Frequency multipliers</subject><subject>High electron mobility transistors</subject><subject>Instrumentation</subject><subject>Integrated circuits</subject><subject>Millimeter waves</subject><subject>MMIC (circuits)</subject><subject>Pain</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Radar systems</subject><subject>Remote monitoring</subject><subject>Semiconductor devices</subject><issn>1866-6892</issn><issn>1866-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczST7Cabi1DrV6FFaP04hjSblC3tRpP00H_vllU8eZo5vM87w4PQJdBroFTeJKBSMEKBEaUKIPIIDaASgghFxfHvXil2is5SWlMqikKJAbod4Q9yZ9oaz2aTMZ6b2kS82KfsttiHiOduG7LD9y47m5vQ4uDxe5PNBi-aVZvO0Yk3m-QufuYQvT0-vI6fyfTlaTIeTYnlIDKR0krua14Wji6XdWms494yIS14MBVIr7zwJYjuTQ8WhFJLa5hVgjPnFfAhuup7P2P42rmU9TrsYtud1IyVqlSqKniXgj5lY0gpOq8_Y7M1ca-B6oMm3WvSnSZ90KRlx7CeSV22Xbn41_w_9A3S52gv</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Diebold, Sebastian</creator><creator>Ayhan, Serdal</creator><creator>Scherr, Steffen</creator><creator>Massler, Hermann</creator><creator>Tessmann, Axel</creator><creator>Leuther, Arnulf</creator><creator>Ambacher, Oliver</creator><creator>Zwick, Thomas</creator><creator>Kallfass, Ingmar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20121201</creationdate><title>A W-Band MMIC Radar System for Remote Detection of Vital Signs</title><author>Diebold, Sebastian ; Ayhan, Serdal ; Scherr, Steffen ; Massler, Hermann ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Zwick, Thomas ; Kallfass, Ingmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-77c73fd354e0bbd5ace3fc267c1f1a817f9f6f516186f1c1699bca2c9632ef913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical Electrodynamics</topic><topic>Continuous radiation</topic><topic>Electrical Engineering</topic><topic>Electron mobility</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Frequency multipliers</topic><topic>High electron mobility transistors</topic><topic>Instrumentation</topic><topic>Integrated circuits</topic><topic>Millimeter waves</topic><topic>MMIC (circuits)</topic><topic>Pain</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Radar systems</topic><topic>Remote monitoring</topic><topic>Semiconductor devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Sebastian</creatorcontrib><creatorcontrib>Ayhan, Serdal</creatorcontrib><creatorcontrib>Scherr, Steffen</creatorcontrib><creatorcontrib>Massler, Hermann</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Kallfass, Ingmar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Sebastian</au><au>Ayhan, Serdal</au><au>Scherr, Steffen</au><au>Massler, Hermann</au><au>Tessmann, Axel</au><au>Leuther, Arnulf</au><au>Ambacher, Oliver</au><au>Zwick, Thomas</au><au>Kallfass, Ingmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A W-Band MMIC Radar System for Remote Detection of Vital Signs</atitle><jtitle>Journal of infrared, millimeter and terahertz waves</jtitle><stitle>J Infrared Milli Terahz Waves</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>33</volume><issue>12</issue><spage>1250</spage><epage>1267</epage><pages>1250-1267</pages><issn>1866-6892</issn><eissn>1866-6906</eissn><abstract>In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10762-012-9941-7</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6892 |
ispartof | Journal of infrared, millimeter and terahertz waves, 2012-12, Vol.33 (12), p.1250-1267 |
issn | 1866-6892 1866-6906 |
language | eng |
recordid | cdi_proquest_journals_2259599843 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Electrodynamics Continuous radiation Electrical Engineering Electron mobility Electronics and Microelectronics Engineering Frequency multipliers High electron mobility transistors Instrumentation Integrated circuits Millimeter waves MMIC (circuits) Pain Radar detection Radar equipment Radar systems Remote monitoring Semiconductor devices |
title | A W-Band MMIC Radar System for Remote Detection of Vital Signs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20W-Band%20MMIC%20Radar%20System%20for%20Remote%20Detection%20of%20Vital%20Signs&rft.jtitle=Journal%20of%20infrared,%20millimeter%20and%20terahertz%20waves&rft.au=Diebold,%20Sebastian&rft.date=2012-12-01&rft.volume=33&rft.issue=12&rft.spage=1250&rft.epage=1267&rft.pages=1250-1267&rft.issn=1866-6892&rft.eissn=1866-6906&rft_id=info:doi/10.1007/s10762-012-9941-7&rft_dat=%3Cproquest_cross%3E2259599843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259599843&rft_id=info:pmid/&rfr_iscdi=true |