An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines

In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ transactions on electrical and electronic engineering 2019-08, Vol.14 (8), p.1236-1243
Hauptverfasser: Li, Weite, Liang, Peifeng, Hu, Jinglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 8
container_start_page 1236
container_title IEEJ transactions on electrical and electronic engineering
container_volume 14
creator Li, Weite
Liang, Peifeng
Hu, Jinglu
description In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
doi_str_mv 10.1002/tee.22923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259595902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259595902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI6580cZZVVX6kSmzK2nKcMbhK7dROqLrjCJyRk5CSih2axYzmfW9GegjdUjKhhLBpCzBhrGD8DI1owWmSFoKe_805v0RXMW4ISTMuxAi1c4dV13pw2lcQvj-_ShWhwo0FDXsbAdfWgQp428s1Nj5g591pp2sVozVWq9Z6h7to3RvedSraExC7pvGhxR-g2965Vfq9F-I1ujCqjnBz6mP0-rBcL56S1cvj82K-SjTPOE-MpgXNiWZpWbKMaSE0TbMy1wIIAc1mjDNaZrkCQ3M1EylkyqSkAlYSUYmSj9HdcLcJftdBbOXGd8H1LyVjs-JYhPXU_UDp4GMMYGQT7FaFg6REHkOVfajyN9SenQ7s3tZw-B-U6-VycPwAODV8Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259595902</pqid></control><display><type>article</type><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</creator><creatorcontrib>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</creatorcontrib><description>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.22923</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>autoencoder ; Classification ; Kernel functions ; kernel machine ; Manual control ; nonlinear classification ; support vector machine ; Support vector machines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2019-08, Vol.14 (8), p.1236-1243</ispartof><rights>2019 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</citedby><cites>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.22923$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.22923$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Liang, Peifeng</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><title>IEEJ transactions on electrical and electronic engineering</title><description>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</description><subject>autoencoder</subject><subject>Classification</subject><subject>Kernel functions</subject><subject>kernel machine</subject><subject>Manual control</subject><subject>nonlinear classification</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI6580cZZVVX6kSmzK2nKcMbhK7dROqLrjCJyRk5CSih2axYzmfW9GegjdUjKhhLBpCzBhrGD8DI1owWmSFoKe_805v0RXMW4ISTMuxAi1c4dV13pw2lcQvj-_ShWhwo0FDXsbAdfWgQp428s1Nj5g591pp2sVozVWq9Z6h7to3RvedSraExC7pvGhxR-g2965Vfq9F-I1ujCqjnBz6mP0-rBcL56S1cvj82K-SjTPOE-MpgXNiWZpWbKMaSE0TbMy1wIIAc1mjDNaZrkCQ3M1EylkyqSkAlYSUYmSj9HdcLcJftdBbOXGd8H1LyVjs-JYhPXU_UDp4GMMYGQT7FaFg6REHkOVfajyN9SenQ7s3tZw-B-U6-VycPwAODV8Og</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Li, Weite</creator><creator>Liang, Peifeng</creator><creator>Hu, Jinglu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201908</creationdate><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><author>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>autoencoder</topic><topic>Classification</topic><topic>Kernel functions</topic><topic>kernel machine</topic><topic>Manual control</topic><topic>nonlinear classification</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Liang, Peifeng</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weite</au><au>Liang, Peifeng</au><au>Hu, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2019-08</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley &amp; Sons, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/tee.22923</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1931-4973
ispartof IEEJ transactions on electrical and electronic engineering, 2019-08, Vol.14 (8), p.1236-1243
issn 1931-4973
1931-4981
language eng
recordid cdi_proquest_journals_2259595902
source Wiley Online Library Journals Frontfile Complete
subjects autoencoder
Classification
Kernel functions
kernel machine
Manual control
nonlinear classification
support vector machine
Support vector machines
title An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20autoencoder%E2%80%90based%20piecewise%20linear%20model%20for%20nonlinear%20classification%20using%20quasilinear%20support%20vector%20machines&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Li,%20Weite&rft.date=2019-08&rft.volume=14&rft.issue=8&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.22923&rft_dat=%3Cproquest_cross%3E2259595902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259595902&rft_id=info:pmid/&rfr_iscdi=true