An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines
In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2019-08, Vol.14 (8), p.1236-1243 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1243 |
---|---|
container_issue | 8 |
container_start_page | 1236 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 14 |
creator | Li, Weite Liang, Peifeng Hu, Jinglu |
description | In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/tee.22923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259595902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259595902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI6580cZZVVX6kSmzK2nKcMbhK7dROqLrjCJyRk5CSih2axYzmfW9GegjdUjKhhLBpCzBhrGD8DI1owWmSFoKe_805v0RXMW4ISTMuxAi1c4dV13pw2lcQvj-_ShWhwo0FDXsbAdfWgQp428s1Nj5g591pp2sVozVWq9Z6h7to3RvedSraExC7pvGhxR-g2965Vfq9F-I1ujCqjnBz6mP0-rBcL56S1cvj82K-SjTPOE-MpgXNiWZpWbKMaSE0TbMy1wIIAc1mjDNaZrkCQ3M1EylkyqSkAlYSUYmSj9HdcLcJftdBbOXGd8H1LyVjs-JYhPXU_UDp4GMMYGQT7FaFg6REHkOVfajyN9SenQ7s3tZw-B-U6-VycPwAODV8Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259595902</pqid></control><display><type>article</type><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</creator><creatorcontrib>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</creatorcontrib><description>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.22923</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>autoencoder ; Classification ; Kernel functions ; kernel machine ; Manual control ; nonlinear classification ; support vector machine ; Support vector machines</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2019-08, Vol.14 (8), p.1236-1243</ispartof><rights>2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</rights><rights>Copyright © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</citedby><cites>FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.22923$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.22923$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Liang, Peifeng</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><title>IEEJ transactions on electrical and electronic engineering</title><description>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</description><subject>autoencoder</subject><subject>Classification</subject><subject>Kernel functions</subject><subject>kernel machine</subject><subject>Manual control</subject><subject>nonlinear classification</subject><subject>support vector machine</subject><subject>Support vector machines</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI6580cZZVVX6kSmzK2nKcMbhK7dROqLrjCJyRk5CSih2axYzmfW9GegjdUjKhhLBpCzBhrGD8DI1owWmSFoKe_805v0RXMW4ISTMuxAi1c4dV13pw2lcQvj-_ShWhwo0FDXsbAdfWgQp428s1Nj5g591pp2sVozVWq9Z6h7to3RvedSraExC7pvGhxR-g2965Vfq9F-I1ujCqjnBz6mP0-rBcL56S1cvj82K-SjTPOE-MpgXNiWZpWbKMaSE0TbMy1wIIAc1mjDNaZrkCQ3M1EylkyqSkAlYSUYmSj9HdcLcJftdBbOXGd8H1LyVjs-JYhPXU_UDp4GMMYGQT7FaFg6REHkOVfajyN9SenQ7s3tZw-B-U6-VycPwAODV8Og</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Li, Weite</creator><creator>Liang, Peifeng</creator><creator>Hu, Jinglu</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201908</creationdate><title>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</title><author>Li, Weite ; Liang, Peifeng ; Hu, Jinglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3633-fc19170c24bb262c88c146b7c8e00ec252321b67aef17a584e6af40de2b08d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>autoencoder</topic><topic>Classification</topic><topic>Kernel functions</topic><topic>kernel machine</topic><topic>Manual control</topic><topic>nonlinear classification</topic><topic>support vector machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weite</creatorcontrib><creatorcontrib>Liang, Peifeng</creatorcontrib><creatorcontrib>Hu, Jinglu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weite</au><au>Liang, Peifeng</au><au>Hu, Jinglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2019-08</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>In this paper, we propose to implement a piecewise linear model to solve nonlinear classification problems. In order to realize a switch between linear models, a data‐dependent gating mechanism achieved by an autoencoder is designed to assign gate signals automatically. We ensure that a diversity of gate signals is available so that it is possible for our model to switch between a large number of linear classifiers. Besides, we also introduce a sparsity level to add a manual control on the flexibility of the proposed model by using a winner‐take‐all strategy. Therefore, our model can maintain a balance between underfitting and overfitting problems. Then, given a learned gating mechanism, the proposed model is shown to be equivalent to a kernel machine by deriving a quasilinear kernel function with the gating mechanism included. Therefore, a quasilinear support vector machine can be applied to solve the nonlinear classification problems. Experimental results demonstrate that our proposed piecewise linear model performs better than or is at least competitive with its state‐of‐the‐art counterparts. © 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.22923</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2019-08, Vol.14 (8), p.1236-1243 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_2259595902 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | autoencoder Classification Kernel functions kernel machine Manual control nonlinear classification support vector machine Support vector machines |
title | An autoencoder‐based piecewise linear model for nonlinear classification using quasilinear support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20autoencoder%E2%80%90based%20piecewise%20linear%20model%20for%20nonlinear%20classification%20using%20quasilinear%20support%20vector%20machines&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Li,%20Weite&rft.date=2019-08&rft.volume=14&rft.issue=8&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.22923&rft_dat=%3Cproquest_cross%3E2259595902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259595902&rft_id=info:pmid/&rfr_iscdi=true |