Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer
Cr-doped TiO 2 nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO 2 nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO 2 nanoparticles w...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2017-03, Vol.81 (3), p.645-651 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 651 |
---|---|
container_issue | 3 |
container_start_page | 645 |
container_title | Journal of sol-gel science and technology |
container_volume | 81 |
creator | Asemi, Morteza Maleki, Saeedeh Ghanaatshoar, Majid |
description | Cr-doped TiO
2
nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO
2
nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO
2
nanoparticles with 0.5 % Cr dopant concentration were selected to fabricate dye-sensitized solar cells due to their smaller band gap. Furthermore, Cr-doped TiO
2
thin films (0.5 %) with different thicknesses were employed as blocking layer on the surface of fluorine-doped tin oxide (FTO) substrate. The current density–voltage measurement showed that the photovoltaic parameters of the fabricated dye-sensitized solar cells were improved after introducing Cr-doped TiO
2
blocking layer at the interface of FTO and Cr-doped TiO
2
mesoporous layer. The maximum power conversion efficiency increased more than 110 % as a result of inserting the Cr-doped blocking layer. The electrochemical impedance spectroscopy indicated that a more efficient charge transfer process takes place at the interface of the FTO/TiO
2
due to the enhanced interfacial properties and reduction of charge recombination.
Graphical Abstract |
doi_str_mv | 10.1007/s10971-016-4257-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259552861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880749378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f8d25b5310d0a19c7fa02b8eb4b6a43158e8751f55535a97749d7fbf5ca4fa523</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giMRvOji92RlTxJVUqQ5ktO7FLSkiKnQq1vx5XYYABpruTnvc96SHkksE1A5A3kUEpGQVWUMFR0v0RmTCUORVKFMdkAiVXFCTIU3IW4xoAUDA5Ic-zQOt-4-ps2Sw4tSamtd45Gl0Xm6HZpzP2rQlZ5do2Zp_N8Jr9ymS27au3pltlrdm5cE5OvGmju_ieU_Jyf7ecPdL54uFpdjunVS7EQL2qOVrMGdRgWFlJb4Bb5aywhRE5Q-WUROYRMUdTSinKWnrrsTLCG-T5lFyNvZvQf2xdHPS634YuvdScY4nIVcH-o5hSkFpzqRLFRqoKfYzBeb0JzbsJO81AH_TqUa9OevVBr96nDB8zMbHdyoUfzX-GvgCJ9nuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259552861</pqid></control><display><type>article</type><title>Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer</title><source>SpringerLink Journals</source><creator>Asemi, Morteza ; Maleki, Saeedeh ; Ghanaatshoar, Majid</creator><creatorcontrib>Asemi, Morteza ; Maleki, Saeedeh ; Ghanaatshoar, Majid</creatorcontrib><description>Cr-doped TiO
2
nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO
2
nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO
2
nanoparticles with 0.5 % Cr dopant concentration were selected to fabricate dye-sensitized solar cells due to their smaller band gap. Furthermore, Cr-doped TiO
2
thin films (0.5 %) with different thicknesses were employed as blocking layer on the surface of fluorine-doped tin oxide (FTO) substrate. The current density–voltage measurement showed that the photovoltaic parameters of the fabricated dye-sensitized solar cells were improved after introducing Cr-doped TiO
2
blocking layer at the interface of FTO and Cr-doped TiO
2
mesoporous layer. The maximum power conversion efficiency increased more than 110 % as a result of inserting the Cr-doped blocking layer. The electrochemical impedance spectroscopy indicated that a more efficient charge transfer process takes place at the interface of the FTO/TiO
2
due to the enhanced interfacial properties and reduction of charge recombination.
Graphical Abstract</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-016-4257-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Ceramics ; Charge transfer ; Chemical synthesis ; Chemistry and Materials Science ; Chromium ; Composites ; Dye-sensitized solar cells ; Dyes ; Electrical measurement ; Electrochemical impedance spectroscopy ; Emission analysis ; Energy conversion efficiency ; Field emission microscopy ; Fluorine ; Glass ; Inorganic Chemistry ; Interfacial properties ; Materials Science ; Maximum power ; Nanoparticles ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Organic chemistry ; Original Paper: Devices based on sol-gel or hybrid materials ; Photovoltaic cells ; Scanning electron microscopy ; Sol-gel processes ; Substrates ; Thin films ; Tin oxides ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2017-03, Vol.81 (3), p.645-651</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f8d25b5310d0a19c7fa02b8eb4b6a43158e8751f55535a97749d7fbf5ca4fa523</citedby><cites>FETCH-LOGICAL-c344t-f8d25b5310d0a19c7fa02b8eb4b6a43158e8751f55535a97749d7fbf5ca4fa523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-016-4257-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-016-4257-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Asemi, Morteza</creatorcontrib><creatorcontrib>Maleki, Saeedeh</creatorcontrib><creatorcontrib>Ghanaatshoar, Majid</creatorcontrib><title>Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Cr-doped TiO
2
nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO
2
nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO
2
nanoparticles with 0.5 % Cr dopant concentration were selected to fabricate dye-sensitized solar cells due to their smaller band gap. Furthermore, Cr-doped TiO
2
thin films (0.5 %) with different thicknesses were employed as blocking layer on the surface of fluorine-doped tin oxide (FTO) substrate. The current density–voltage measurement showed that the photovoltaic parameters of the fabricated dye-sensitized solar cells were improved after introducing Cr-doped TiO
2
blocking layer at the interface of FTO and Cr-doped TiO
2
mesoporous layer. The maximum power conversion efficiency increased more than 110 % as a result of inserting the Cr-doped blocking layer. The electrochemical impedance spectroscopy indicated that a more efficient charge transfer process takes place at the interface of the FTO/TiO
2
due to the enhanced interfacial properties and reduction of charge recombination.
Graphical Abstract</description><subject>Anatase</subject><subject>Ceramics</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Composites</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrical measurement</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Emission analysis</subject><subject>Energy conversion efficiency</subject><subject>Field emission microscopy</subject><subject>Fluorine</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Interfacial properties</subject><subject>Materials Science</subject><subject>Maximum power</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Organic chemistry</subject><subject>Original Paper: Devices based on sol-gel or hybrid materials</subject><subject>Photovoltaic cells</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Tin oxides</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwA9giMRvOji92RlTxJVUqQ5ktO7FLSkiKnQq1vx5XYYABpruTnvc96SHkksE1A5A3kUEpGQVWUMFR0v0RmTCUORVKFMdkAiVXFCTIU3IW4xoAUDA5Ic-zQOt-4-ps2Sw4tSamtd45Gl0Xm6HZpzP2rQlZ5do2Zp_N8Jr9ymS27au3pltlrdm5cE5OvGmju_ieU_Jyf7ecPdL54uFpdjunVS7EQL2qOVrMGdRgWFlJb4Bb5aywhRE5Q-WUROYRMUdTSinKWnrrsTLCG-T5lFyNvZvQf2xdHPS634YuvdScY4nIVcH-o5hSkFpzqRLFRqoKfYzBeb0JzbsJO81AH_TqUa9OevVBr96nDB8zMbHdyoUfzX-GvgCJ9nuo</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Asemi, Morteza</creator><creator>Maleki, Saeedeh</creator><creator>Ghanaatshoar, Majid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer</title><author>Asemi, Morteza ; Maleki, Saeedeh ; Ghanaatshoar, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f8d25b5310d0a19c7fa02b8eb4b6a43158e8751f55535a97749d7fbf5ca4fa523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Ceramics</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Composites</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrical measurement</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Emission analysis</topic><topic>Energy conversion efficiency</topic><topic>Field emission microscopy</topic><topic>Fluorine</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Interfacial properties</topic><topic>Materials Science</topic><topic>Maximum power</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Organic chemistry</topic><topic>Original Paper: Devices based on sol-gel or hybrid materials</topic><topic>Photovoltaic cells</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Tin oxides</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asemi, Morteza</creatorcontrib><creatorcontrib>Maleki, Saeedeh</creatorcontrib><creatorcontrib>Ghanaatshoar, Majid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asemi, Morteza</au><au>Maleki, Saeedeh</au><au>Ghanaatshoar, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>81</volume><issue>3</issue><spage>645</spage><epage>651</epage><pages>645-651</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Cr-doped TiO
2
nanoparticles were synthesized by chemical sol–gel method. The anatase phase of TiO
2
nanoparticles was proved by X-ray diffraction analysis. Furthermore, the field emission scanning electron microscopy revealed that the size of the nanoparticles was about 30 nm. TiO
2
nanoparticles with 0.5 % Cr dopant concentration were selected to fabricate dye-sensitized solar cells due to their smaller band gap. Furthermore, Cr-doped TiO
2
thin films (0.5 %) with different thicknesses were employed as blocking layer on the surface of fluorine-doped tin oxide (FTO) substrate. The current density–voltage measurement showed that the photovoltaic parameters of the fabricated dye-sensitized solar cells were improved after introducing Cr-doped TiO
2
blocking layer at the interface of FTO and Cr-doped TiO
2
mesoporous layer. The maximum power conversion efficiency increased more than 110 % as a result of inserting the Cr-doped blocking layer. The electrochemical impedance spectroscopy indicated that a more efficient charge transfer process takes place at the interface of the FTO/TiO
2
due to the enhanced interfacial properties and reduction of charge recombination.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-016-4257-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2017-03, Vol.81 (3), p.645-651 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2259552861 |
source | SpringerLink Journals |
subjects | Anatase Ceramics Charge transfer Chemical synthesis Chemistry and Materials Science Chromium Composites Dye-sensitized solar cells Dyes Electrical measurement Electrochemical impedance spectroscopy Emission analysis Energy conversion efficiency Field emission microscopy Fluorine Glass Inorganic Chemistry Interfacial properties Materials Science Maximum power Nanoparticles Nanotechnology Natural Materials Optical and Electronic Materials Organic chemistry Original Paper: Devices based on sol-gel or hybrid materials Photovoltaic cells Scanning electron microscopy Sol-gel processes Substrates Thin films Tin oxides Titanium dioxide X-ray diffraction |
title | Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cr-doped%20TiO2-based%20dye-sensitized%20solar%20cells%20with%20Cr-doped%20TiO2%20blocking%20layer&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Asemi,%20Morteza&rft.date=2017-03-01&rft.volume=81&rft.issue=3&rft.spage=645&rft.epage=651&rft.pages=645-651&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-016-4257-z&rft_dat=%3Cproquest_cross%3E1880749378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259552861&rft_id=info:pmid/&rfr_iscdi=true |