Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites

Sol–gel derived TiO 2 and SiO 2 -wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2012-11, Vol.64 (2), p.452-464
Hauptverfasser: Shabir Mahr, M., Hübert, T., Schartel, B., Bahr, H., Sabel, M., Militz, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 2
container_start_page 452
container_title Journal of sol-gel science and technology
container_volume 64
creator Shabir Mahr, M.
Hübert, T.
Schartel, B.
Bahr, H.
Sabel, M.
Militz, H.
description Sol–gel derived TiO 2 and SiO 2 -wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites.
doi_str_mv 10.1007/s10971-012-2877-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259546577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259546577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-be92a8d13477048e598b2b531befd3b63f57df19a734bf6885388d288d233d903</originalsourceid><addsrcrecordid>eNp1kM9KAzEQh4MoWKsP4C0gHqP5s9lkj1KsCgUP1nPIbiZly3ZTk63Sm-_gG_okplb05CFkyHzzy_AhdM7oFaNUXSdGK8UIZZxwrRSRB2jEpBKk0EV5iEa04ppQRdUxOklpSSmVBVMj5KZtBBxhsNHZvtli8B6aIeG2x6ntFx1g2zvswqbOZWe3EMHhFLrP948FdNhBbF_zy7x95N_kUy7IWwgON2G1DqkdIJ2iI2-7BGc_9xg9T2_nk3sye7x7mNzMSCOKciA1VNxqx0ShFC00yErXvJaC1eCdqEvhpXKeVVaJoval1lJo7fjuCOEqKsboYp-7juFlA2kwy7CJff7ScC4rWZRSqUyxPdXEkFIEb9axXdm4NYyanUyzl2myTLOTaWSeufxJtqmxnY_ZVZt-B3mpZEmpzhzfcym3-gXEvw3-D_8CXnGELg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259546577</pqid></control><display><type>article</type><title>Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shabir Mahr, M. ; Hübert, T. ; Schartel, B. ; Bahr, H. ; Sabel, M. ; Militz, H.</creator><creatorcontrib>Shabir Mahr, M. ; Hübert, T. ; Schartel, B. ; Bahr, H. ; Sabel, M. ; Militz, H.</creatorcontrib><description>Sol–gel derived TiO 2 and SiO 2 -wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-012-2877-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Ceramics ; Chemistry ; Chemistry and Materials Science ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Composite materials ; Composites ; Enthalpy ; Exact sciences and technology ; Fire hazards ; Fire load ; Flame retardants ; General and physical chemistry ; Glass ; Inorganic Chemistry ; Laminates ; Materials Science ; Multilayers ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper ; Silicon dioxide ; Sol-gel processes ; Titanium dioxide ; Wood composites</subject><ispartof>Journal of sol-gel science and technology, 2012-11, Vol.64 (2), p.452-464</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>2014 INIST-CNRS</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-be92a8d13477048e598b2b531befd3b63f57df19a734bf6885388d288d233d903</citedby><cites>FETCH-LOGICAL-c346t-be92a8d13477048e598b2b531befd3b63f57df19a734bf6885388d288d233d903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-012-2877-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-012-2877-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26756008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabir Mahr, M.</creatorcontrib><creatorcontrib>Hübert, T.</creatorcontrib><creatorcontrib>Schartel, B.</creatorcontrib><creatorcontrib>Bahr, H.</creatorcontrib><creatorcontrib>Sabel, M.</creatorcontrib><creatorcontrib>Militz, H.</creatorcontrib><title>Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Sol–gel derived TiO 2 and SiO 2 -wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites.</description><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Fire hazards</subject><subject>Fire load</subject><subject>Flame retardants</subject><subject>General and physical chemistry</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Laminates</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Titanium dioxide</subject><subject>Wood composites</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9KAzEQh4MoWKsP4C0gHqP5s9lkj1KsCgUP1nPIbiZly3ZTk63Sm-_gG_okplb05CFkyHzzy_AhdM7oFaNUXSdGK8UIZZxwrRSRB2jEpBKk0EV5iEa04ppQRdUxOklpSSmVBVMj5KZtBBxhsNHZvtli8B6aIeG2x6ntFx1g2zvswqbOZWe3EMHhFLrP948FdNhBbF_zy7x95N_kUy7IWwgON2G1DqkdIJ2iI2-7BGc_9xg9T2_nk3sye7x7mNzMSCOKciA1VNxqx0ShFC00yErXvJaC1eCdqEvhpXKeVVaJoval1lJo7fjuCOEqKsboYp-7juFlA2kwy7CJff7ScC4rWZRSqUyxPdXEkFIEb9axXdm4NYyanUyzl2myTLOTaWSeufxJtqmxnY_ZVZt-B3mpZEmpzhzfcym3-gXEvw3-D_8CXnGELg</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Shabir Mahr, M.</creator><creator>Hübert, T.</creator><creator>Schartel, B.</creator><creator>Bahr, H.</creator><creator>Sabel, M.</creator><creator>Militz, H.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121101</creationdate><title>Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites</title><author>Shabir Mahr, M. ; Hübert, T. ; Schartel, B. ; Bahr, H. ; Sabel, M. ; Militz, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-be92a8d13477048e598b2b531befd3b63f57df19a734bf6885388d288d233d903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Fire hazards</topic><topic>Fire load</topic><topic>Flame retardants</topic><topic>General and physical chemistry</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Laminates</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Titanium dioxide</topic><topic>Wood composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabir Mahr, M.</creatorcontrib><creatorcontrib>Hübert, T.</creatorcontrib><creatorcontrib>Schartel, B.</creatorcontrib><creatorcontrib>Bahr, H.</creatorcontrib><creatorcontrib>Sabel, M.</creatorcontrib><creatorcontrib>Militz, H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabir Mahr, M.</au><au>Hübert, T.</au><au>Schartel, B.</au><au>Bahr, H.</au><au>Sabel, M.</au><au>Militz, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>64</volume><issue>2</issue><spage>452</spage><epage>464</epage><pages>452-464</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Sol–gel derived TiO 2 and SiO 2 -wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10971-012-2877-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2012-11, Vol.64 (2), p.452-464
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2259546577
source SpringerLink Journals - AutoHoldings
subjects Ceramics
Chemistry
Chemistry and Materials Science
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Composite materials
Composites
Enthalpy
Exact sciences and technology
Fire hazards
Fire load
Flame retardants
General and physical chemistry
Glass
Inorganic Chemistry
Laminates
Materials Science
Multilayers
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper
Silicon dioxide
Sol-gel processes
Titanium dioxide
Wood composites
title Fire retardancy effects in single and double layered sol–gel derived TiO2 and SiO2-wood composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fire%20retardancy%20effects%20in%20single%20and%20double%20layered%20sol%E2%80%93gel%20derived%20TiO2%20and%20SiO2-wood%20composites&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Shabir%20Mahr,%20M.&rft.date=2012-11-01&rft.volume=64&rft.issue=2&rft.spage=452&rft.epage=464&rft.pages=452-464&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-012-2877-5&rft_dat=%3Cproquest_cross%3E2259546577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259546577&rft_id=info:pmid/&rfr_iscdi=true