A method to improve crystal quality of CZTSSe absorber layer

In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of seleni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2018-07, Vol.87 (1), p.245-253
Hauptverfasser: Tuan, Dao Anh, Ke, Nguyen Huu, Thi Kieu Loan, Phan, Hung, Le Vu Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1
container_start_page 245
container_title Journal of sol-gel science and technology
container_volume 87
creator Tuan, Dao Anh
Ke, Nguyen Huu
Thi Kieu Loan, Phan
Hung, Le Vu Tuan
description In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10 19 cm −3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application. To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. Highlights High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.
doi_str_mv 10.1007/s10971-018-4708-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259526373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259526373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wF3AdfRlksybgJtS_IKCi9aNm5DJZLRl2mmTGWH-vSkjuNLV25x77-MQcs3hlgPgXeSgkTPgBZMIBdMnZMIVCiYLmZ-SCeisYICA5-Qixg0AKMlxQu5ndOu7z7aiXUvX231ovzx1YYidbeiht826G2hb0_n7arn01JaxDaUPtLGDD5fkrLZN9Fc_d0reHh9W82e2eH16mc8WzAkpO1brwlWl0LV3MitRZTmick7mXubcYcYTYL0TkHsrsFCJ4KqqvBZelmUtxZTcjL3pvUPvY2c2bR92adJkmdKpUKD4lwIUIFSBOlF8pFxoYwy-Nvuw3towGA7mqNKMKk1SaY4qzTGTjZmY2N2HD7_Nf4e-AQzUdHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259526373</pqid></control><display><type>article</type><title>A method to improve crystal quality of CZTSSe absorber layer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</creator><creatorcontrib>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</creatorcontrib><description>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10 19 cm −3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application. To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. Highlights High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4708-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Batch type furnaces ; Ceramics ; Chemistry and Materials Science ; Composites ; Crystal growth ; Crystal structure ; Crystallinity ; Electrical properties ; Electrical resistivity ; Energy gap ; environment and building applications ; Glass ; Glass substrates ; Grain size ; Inorganic Chemistry ; Materials Science ; Morphology ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Optical properties ; Original Paper: Sol-gel and hybrid materials for energy ; Photovoltaic cells ; Selenium ; Spin coating ; Thin films ; Tube furnaces</subject><ispartof>Journal of sol-gel science and technology, 2018-07, Vol.87 (1), p.245-253</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</citedby><cites>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</cites><orcidid>0000-0002-6912-404X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4708-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4708-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tuan, Dao Anh</creatorcontrib><creatorcontrib>Ke, Nguyen Huu</creatorcontrib><creatorcontrib>Thi Kieu Loan, Phan</creatorcontrib><creatorcontrib>Hung, Le Vu Tuan</creatorcontrib><title>A method to improve crystal quality of CZTSSe absorber layer</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10 19 cm −3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application. To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. Highlights High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</description><subject>Absorbers</subject><subject>Batch type furnaces</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy gap</subject><subject>environment and building applications</subject><subject>Glass</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Paper: Sol-gel and hybrid materials for energy</subject><subject>Photovoltaic cells</subject><subject>Selenium</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Tube furnaces</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKs_wF3AdfRlksybgJtS_IKCi9aNm5DJZLRl2mmTGWH-vSkjuNLV25x77-MQcs3hlgPgXeSgkTPgBZMIBdMnZMIVCiYLmZ-SCeisYICA5-Qixg0AKMlxQu5ndOu7z7aiXUvX231ovzx1YYidbeiht826G2hb0_n7arn01JaxDaUPtLGDD5fkrLZN9Fc_d0reHh9W82e2eH16mc8WzAkpO1brwlWl0LV3MitRZTmick7mXubcYcYTYL0TkHsrsFCJ4KqqvBZelmUtxZTcjL3pvUPvY2c2bR92adJkmdKpUKD4lwIUIFSBOlF8pFxoYwy-Nvuw3towGA7mqNKMKk1SaY4qzTGTjZmY2N2HD7_Nf4e-AQzUdHo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Tuan, Dao Anh</creator><creator>Ke, Nguyen Huu</creator><creator>Thi Kieu Loan, Phan</creator><creator>Hung, Le Vu Tuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6912-404X</orcidid></search><sort><creationdate>20180701</creationdate><title>A method to improve crystal quality of CZTSSe absorber layer</title><author>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Batch type furnaces</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy gap</topic><topic>environment and building applications</topic><topic>Glass</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Paper: Sol-gel and hybrid materials for energy</topic><topic>Photovoltaic cells</topic><topic>Selenium</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Tube furnaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuan, Dao Anh</creatorcontrib><creatorcontrib>Ke, Nguyen Huu</creatorcontrib><creatorcontrib>Thi Kieu Loan, Phan</creatorcontrib><creatorcontrib>Hung, Le Vu Tuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuan, Dao Anh</au><au>Ke, Nguyen Huu</au><au>Thi Kieu Loan, Phan</au><au>Hung, Le Vu Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to improve crystal quality of CZTSSe absorber layer</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>87</volume><issue>1</issue><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10 19 cm −3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application. To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. Highlights High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated. At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4708-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6912-404X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2018-07, Vol.87 (1), p.245-253
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2259526373
source SpringerLink Journals - AutoHoldings
subjects Absorbers
Batch type furnaces
Ceramics
Chemistry and Materials Science
Composites
Crystal growth
Crystal structure
Crystallinity
Electrical properties
Electrical resistivity
Energy gap
environment and building applications
Glass
Glass substrates
Grain size
Inorganic Chemistry
Materials Science
Morphology
Nanotechnology
Natural Materials
Optical and Electronic Materials
Optical properties
Original Paper: Sol-gel and hybrid materials for energy
Photovoltaic cells
Selenium
Spin coating
Thin films
Tube furnaces
title A method to improve crystal quality of CZTSSe absorber layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20improve%20crystal%20quality%20of%20CZTSSe%20absorber%20layer&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Tuan,%20Dao%20Anh&rft.date=2018-07-01&rft.volume=87&rft.issue=1&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4708-9&rft_dat=%3Cproquest_cross%3E2259526373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259526373&rft_id=info:pmid/&rfr_iscdi=true