A method to improve crystal quality of CZTSSe absorber layer
In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of seleni...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2018-07, Vol.87 (1), p.245-253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 1 |
container_start_page | 245 |
container_title | Journal of sol-gel science and technology |
container_volume | 87 |
creator | Tuan, Dao Anh Ke, Nguyen Huu Thi Kieu Loan, Phan Hung, Le Vu Tuan |
description | In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10
19
cm
−3
and 0.57 Ω.cm respectively which are suitable for photovoltaic application.
To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
Highlights
High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder.
The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application. |
doi_str_mv | 10.1007/s10971-018-4708-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259526373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259526373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wF3AdfRlksybgJtS_IKCi9aNm5DJZLRl2mmTGWH-vSkjuNLV25x77-MQcs3hlgPgXeSgkTPgBZMIBdMnZMIVCiYLmZ-SCeisYICA5-Qixg0AKMlxQu5ndOu7z7aiXUvX231ovzx1YYidbeiht826G2hb0_n7arn01JaxDaUPtLGDD5fkrLZN9Fc_d0reHh9W82e2eH16mc8WzAkpO1brwlWl0LV3MitRZTmick7mXubcYcYTYL0TkHsrsFCJ4KqqvBZelmUtxZTcjL3pvUPvY2c2bR92adJkmdKpUKD4lwIUIFSBOlF8pFxoYwy-Nvuw3towGA7mqNKMKk1SaY4qzTGTjZmY2N2HD7_Nf4e-AQzUdHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259526373</pqid></control><display><type>article</type><title>A method to improve crystal quality of CZTSSe absorber layer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</creator><creatorcontrib>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</creatorcontrib><description>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10
19
cm
−3
and 0.57 Ω.cm respectively which are suitable for photovoltaic application.
To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
Highlights
High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder.
The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4708-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorbers ; Batch type furnaces ; Ceramics ; Chemistry and Materials Science ; Composites ; Crystal growth ; Crystal structure ; Crystallinity ; Electrical properties ; Electrical resistivity ; Energy gap ; environment and building applications ; Glass ; Glass substrates ; Grain size ; Inorganic Chemistry ; Materials Science ; Morphology ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Optical properties ; Original Paper: Sol-gel and hybrid materials for energy ; Photovoltaic cells ; Selenium ; Spin coating ; Thin films ; Tube furnaces</subject><ispartof>Journal of sol-gel science and technology, 2018-07, Vol.87 (1), p.245-253</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</citedby><cites>FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</cites><orcidid>0000-0002-6912-404X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4708-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4708-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tuan, Dao Anh</creatorcontrib><creatorcontrib>Ke, Nguyen Huu</creatorcontrib><creatorcontrib>Thi Kieu Loan, Phan</creatorcontrib><creatorcontrib>Hung, Le Vu Tuan</creatorcontrib><title>A method to improve crystal quality of CZTSSe absorber layer</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10
19
cm
−3
and 0.57 Ω.cm respectively which are suitable for photovoltaic application.
To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
Highlights
High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder.
The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</description><subject>Absorbers</subject><subject>Batch type furnaces</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy gap</subject><subject>environment and building applications</subject><subject>Glass</subject><subject>Glass substrates</subject><subject>Grain size</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Paper: Sol-gel and hybrid materials for energy</subject><subject>Photovoltaic cells</subject><subject>Selenium</subject><subject>Spin coating</subject><subject>Thin films</subject><subject>Tube furnaces</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEURYMoWKs_wF3AdfRlksybgJtS_IKCi9aNm5DJZLRl2mmTGWH-vSkjuNLV25x77-MQcs3hlgPgXeSgkTPgBZMIBdMnZMIVCiYLmZ-SCeisYICA5-Qixg0AKMlxQu5ndOu7z7aiXUvX231ovzx1YYidbeiht826G2hb0_n7arn01JaxDaUPtLGDD5fkrLZN9Fc_d0reHh9W82e2eH16mc8WzAkpO1brwlWl0LV3MitRZTmick7mXubcYcYTYL0TkHsrsFCJ4KqqvBZelmUtxZTcjL3pvUPvY2c2bR92adJkmdKpUKD4lwIUIFSBOlF8pFxoYwy-Nvuw3towGA7mqNKMKk1SaY4qzTGTjZmY2N2HD7_Nf4e-AQzUdHo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Tuan, Dao Anh</creator><creator>Ke, Nguyen Huu</creator><creator>Thi Kieu Loan, Phan</creator><creator>Hung, Le Vu Tuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6912-404X</orcidid></search><sort><creationdate>20180701</creationdate><title>A method to improve crystal quality of CZTSSe absorber layer</title><author>Tuan, Dao Anh ; Ke, Nguyen Huu ; Thi Kieu Loan, Phan ; Hung, Le Vu Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f98cdb39fec42b7526775cc46e461c721f98aec306ea378575215dde93e4bbf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorbers</topic><topic>Batch type furnaces</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy gap</topic><topic>environment and building applications</topic><topic>Glass</topic><topic>Glass substrates</topic><topic>Grain size</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Paper: Sol-gel and hybrid materials for energy</topic><topic>Photovoltaic cells</topic><topic>Selenium</topic><topic>Spin coating</topic><topic>Thin films</topic><topic>Tube furnaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuan, Dao Anh</creatorcontrib><creatorcontrib>Ke, Nguyen Huu</creatorcontrib><creatorcontrib>Thi Kieu Loan, Phan</creatorcontrib><creatorcontrib>Hung, Le Vu Tuan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuan, Dao Anh</au><au>Ke, Nguyen Huu</au><au>Thi Kieu Loan, Phan</au><au>Hung, Le Vu Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to improve crystal quality of CZTSSe absorber layer</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>87</volume><issue>1</issue><spage>245</spage><epage>253</epage><pages>245-253</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 10
19
cm
−3
and 0.57 Ω.cm respectively which are suitable for photovoltaic application.
To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
Highlights
High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder.
The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.
At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4708-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6912-404X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2018-07, Vol.87 (1), p.245-253 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2259526373 |
source | SpringerLink Journals - AutoHoldings |
subjects | Absorbers Batch type furnaces Ceramics Chemistry and Materials Science Composites Crystal growth Crystal structure Crystallinity Electrical properties Electrical resistivity Energy gap environment and building applications Glass Glass substrates Grain size Inorganic Chemistry Materials Science Morphology Nanotechnology Natural Materials Optical and Electronic Materials Optical properties Original Paper: Sol-gel and hybrid materials for energy Photovoltaic cells Selenium Spin coating Thin films Tube furnaces |
title | A method to improve crystal quality of CZTSSe absorber layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20improve%20crystal%20quality%20of%20CZTSSe%20absorber%20layer&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Tuan,%20Dao%20Anh&rft.date=2018-07-01&rft.volume=87&rft.issue=1&rft.spage=245&rft.epage=253&rft.pages=245-253&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4708-9&rft_dat=%3Cproquest_cross%3E2259526373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259526373&rft_id=info:pmid/&rfr_iscdi=true |