Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation

This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.391-399
Hauptverfasser: Piñero, Manuel, Mesa-Díaz, María del Mar, de los Santos, Desirée, Reyes-Peces, María V., Díaz-Fraile, José A., de la Rosa-Fox, Nicolás, Esquivias, Luis, Morales-Florez, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 2
container_start_page 391
container_title Journal of sol-gel science and technology
container_volume 86
creator Piñero, Manuel
Mesa-Díaz, María del Mar
de los Santos, Desirée
Reyes-Peces, María V.
Díaz-Fraile, José A.
de la Rosa-Fox, Nicolás
Esquivias, Luis
Morales-Florez, Victor
description This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm 3 . The structural analyses (N 2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m 2 /g and porous volumes above 4.0 cm 3 /g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.
doi_str_mv 10.1007/s10971-018-4645-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259525556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031762505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2A6-hNJo-ZpRRfUBBEt4ZMkmlTpklNpov-e1NGcKWrC4fvOxcOQtcEbgmAvMsEWkkwkAYzwTiWJ2hGuKwxa5g4RTNoaYNBgjxHFzlvAIAzImfo88350MdknK2yH7zR2OjUxVAFHeK471y1jSEOflx7U2mX4soNucqHMK5d9rlo3aFKeudtZWIYUxyGkhVIjz6GS3TW6yG7q587Rx-PD--LZ7x8fXpZ3C-xqRkbsTTWciolJ5wJC8SCploQoWvXdCXi1hnb9qJntWs5c9RJ5iwjXDPoaqnrObqZencpfu1dHtUm7lMoLxWlvOWUcy7-paAmUlAOvFBkokyKOSfXq13yW50OioA6jq2msVUZWx3HVrI4dHJyYcPKpd_mv6VvbLuCcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259525556</pqid></control><display><type>article</type><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><source>Springer Nature - Complete Springer Journals</source><creator>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</creator><creatorcontrib>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</creatorcontrib><description>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm 3 . The structural analyses (N 2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m 2 /g and porous volumes above 4.0 cm 3 /g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4645-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerogels ; Carbon ; Carbon nanotubes ; Ceramics ; Chemistry and Materials Science ; Composites ; Compression tests ; Compressive strength ; cryogels ; Deformation ; etc. ; Gelation ; Glass ; Inorganic Chemistry ; Materials Science ; Mechanical properties ; Nanoparticles ; Nanotechnology ; Nanotubes ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Nano- and macroporous materials (aerogels ; Porous materials ; Porous media ; Silica ; Silicon dioxide ; Sol-gel processes ; Stress concentration ; Structural hierarchy ; Synthesis ; xerogels</subject><ispartof>Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.391-399</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</citedby><cites>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</cites><orcidid>0000-0003-4120-2832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4645-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4645-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>Mesa-Díaz, María del Mar</creatorcontrib><creatorcontrib>de los Santos, Desirée</creatorcontrib><creatorcontrib>Reyes-Peces, María V.</creatorcontrib><creatorcontrib>Díaz-Fraile, José A.</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Esquivias, Luis</creatorcontrib><creatorcontrib>Morales-Florez, Victor</creatorcontrib><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm 3 . The structural analyses (N 2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m 2 /g and porous volumes above 4.0 cm 3 /g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>cryogels</subject><subject>Deformation</subject><subject>etc.</subject><subject>Gelation</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Nano- and macroporous materials (aerogels</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Stress concentration</subject><subject>Structural hierarchy</subject><subject>Synthesis</subject><subject>xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN2A6-hNJo-ZpRRfUBBEt4ZMkmlTpklNpov-e1NGcKWrC4fvOxcOQtcEbgmAvMsEWkkwkAYzwTiWJ2hGuKwxa5g4RTNoaYNBgjxHFzlvAIAzImfo88350MdknK2yH7zR2OjUxVAFHeK471y1jSEOflx7U2mX4soNucqHMK5d9rlo3aFKeudtZWIYUxyGkhVIjz6GS3TW6yG7q587Rx-PD--LZ7x8fXpZ3C-xqRkbsTTWciolJ5wJC8SCploQoWvXdCXi1hnb9qJntWs5c9RJ5iwjXDPoaqnrObqZencpfu1dHtUm7lMoLxWlvOWUcy7-paAmUlAOvFBkokyKOSfXq13yW50OioA6jq2msVUZWx3HVrI4dHJyYcPKpd_mv6VvbLuCcA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Piñero, Manuel</creator><creator>Mesa-Díaz, María del Mar</creator><creator>de los Santos, Desirée</creator><creator>Reyes-Peces, María V.</creator><creator>Díaz-Fraile, José A.</creator><creator>de la Rosa-Fox, Nicolás</creator><creator>Esquivias, Luis</creator><creator>Morales-Florez, Victor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4120-2832</orcidid></search><sort><creationdate>20180501</creationdate><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><author>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>cryogels</topic><topic>Deformation</topic><topic>etc.</topic><topic>Gelation</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Nano- and macroporous materials (aerogels</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Stress concentration</topic><topic>Structural hierarchy</topic><topic>Synthesis</topic><topic>xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>Mesa-Díaz, María del Mar</creatorcontrib><creatorcontrib>de los Santos, Desirée</creatorcontrib><creatorcontrib>Reyes-Peces, María V.</creatorcontrib><creatorcontrib>Díaz-Fraile, José A.</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Esquivias, Luis</creatorcontrib><creatorcontrib>Morales-Florez, Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piñero, Manuel</au><au>Mesa-Díaz, María del Mar</au><au>de los Santos, Desirée</au><au>Reyes-Peces, María V.</au><au>Díaz-Fraile, José A.</au><au>de la Rosa-Fox, Nicolás</au><au>Esquivias, Luis</au><au>Morales-Florez, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>391</spage><epage>399</epage><pages>391-399</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm 3 . The structural analyses (N 2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m 2 /g and porous volumes above 4.0 cm 3 /g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4645-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4120-2832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.391-399
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2259525556
source Springer Nature - Complete Springer Journals
subjects Aerogels
Carbon
Carbon nanotubes
Ceramics
Chemistry and Materials Science
Composites
Compression tests
Compressive strength
cryogels
Deformation
etc.
Gelation
Glass
Inorganic Chemistry
Materials Science
Mechanical properties
Nanoparticles
Nanotechnology
Nanotubes
Natural Materials
Optical and Electronic Materials
Original Paper: Nano- and macroporous materials (aerogels
Porous materials
Porous media
Silica
Silicon dioxide
Sol-gel processes
Stress concentration
Structural hierarchy
Synthesis
xerogels
title Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforced%20silica-carbon%20nanotube%20monolithic%20aerogels%20synthesised%20by%20rapid%20controlled%20gelation&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Pi%C3%B1ero,%20Manuel&rft.date=2018-05-01&rft.volume=86&rft.issue=2&rft.spage=391&rft.epage=399&rft.pages=391-399&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4645-7&rft_dat=%3Cproquest_cross%3E2031762505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259525556&rft_id=info:pmid/&rfr_iscdi=true