Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation
This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.391-399 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 399 |
---|---|
container_issue | 2 |
container_start_page | 391 |
container_title | Journal of sol-gel science and technology |
container_volume | 86 |
creator | Piñero, Manuel Mesa-Díaz, María del Mar de los Santos, Desirée Reyes-Peces, María V. Díaz-Fraile, José A. de la Rosa-Fox, Nicolás Esquivias, Luis Morales-Florez, Victor |
description | This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm
3
. The structural analyses (N
2
physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m
2
/g and porous volumes above 4.0 cm
3
/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications. |
doi_str_mv | 10.1007/s10971-018-4645-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259525556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031762505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2A6-hNJo-ZpRRfUBBEt4ZMkmlTpklNpov-e1NGcKWrC4fvOxcOQtcEbgmAvMsEWkkwkAYzwTiWJ2hGuKwxa5g4RTNoaYNBgjxHFzlvAIAzImfo88350MdknK2yH7zR2OjUxVAFHeK471y1jSEOflx7U2mX4soNucqHMK5d9rlo3aFKeudtZWIYUxyGkhVIjz6GS3TW6yG7q587Rx-PD--LZ7x8fXpZ3C-xqRkbsTTWciolJ5wJC8SCploQoWvXdCXi1hnb9qJntWs5c9RJ5iwjXDPoaqnrObqZencpfu1dHtUm7lMoLxWlvOWUcy7-paAmUlAOvFBkokyKOSfXq13yW50OioA6jq2msVUZWx3HVrI4dHJyYcPKpd_mv6VvbLuCcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259525556</pqid></control><display><type>article</type><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><source>Springer Nature - Complete Springer Journals</source><creator>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</creator><creatorcontrib>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</creatorcontrib><description>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm
3
. The structural analyses (N
2
physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m
2
/g and porous volumes above 4.0 cm
3
/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4645-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerogels ; Carbon ; Carbon nanotubes ; Ceramics ; Chemistry and Materials Science ; Composites ; Compression tests ; Compressive strength ; cryogels ; Deformation ; etc. ; Gelation ; Glass ; Inorganic Chemistry ; Materials Science ; Mechanical properties ; Nanoparticles ; Nanotechnology ; Nanotubes ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Nano- and macroporous materials (aerogels ; Porous materials ; Porous media ; Silica ; Silicon dioxide ; Sol-gel processes ; Stress concentration ; Structural hierarchy ; Synthesis ; xerogels</subject><ispartof>Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.391-399</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</citedby><cites>FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</cites><orcidid>0000-0003-4120-2832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4645-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4645-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>Mesa-Díaz, María del Mar</creatorcontrib><creatorcontrib>de los Santos, Desirée</creatorcontrib><creatorcontrib>Reyes-Peces, María V.</creatorcontrib><creatorcontrib>Díaz-Fraile, José A.</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Esquivias, Luis</creatorcontrib><creatorcontrib>Morales-Florez, Victor</creatorcontrib><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm
3
. The structural analyses (N
2
physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m
2
/g and porous volumes above 4.0 cm
3
/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</description><subject>Aerogels</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>cryogels</subject><subject>Deformation</subject><subject>etc.</subject><subject>Gelation</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Nano- and macroporous materials (aerogels</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Stress concentration</subject><subject>Structural hierarchy</subject><subject>Synthesis</subject><subject>xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_wN2A6-hNJo-ZpRRfUBBEt4ZMkmlTpklNpov-e1NGcKWrC4fvOxcOQtcEbgmAvMsEWkkwkAYzwTiWJ2hGuKwxa5g4RTNoaYNBgjxHFzlvAIAzImfo88350MdknK2yH7zR2OjUxVAFHeK471y1jSEOflx7U2mX4soNucqHMK5d9rlo3aFKeudtZWIYUxyGkhVIjz6GS3TW6yG7q587Rx-PD--LZ7x8fXpZ3C-xqRkbsTTWciolJ5wJC8SCploQoWvXdCXi1hnb9qJntWs5c9RJ5iwjXDPoaqnrObqZencpfu1dHtUm7lMoLxWlvOWUcy7-paAmUlAOvFBkokyKOSfXq13yW50OioA6jq2msVUZWx3HVrI4dHJyYcPKpd_mv6VvbLuCcA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Piñero, Manuel</creator><creator>Mesa-Díaz, María del Mar</creator><creator>de los Santos, Desirée</creator><creator>Reyes-Peces, María V.</creator><creator>Díaz-Fraile, José A.</creator><creator>de la Rosa-Fox, Nicolás</creator><creator>Esquivias, Luis</creator><creator>Morales-Florez, Victor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4120-2832</orcidid></search><sort><creationdate>20180501</creationdate><title>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</title><author>Piñero, Manuel ; Mesa-Díaz, María del Mar ; de los Santos, Desirée ; Reyes-Peces, María V. ; Díaz-Fraile, José A. ; de la Rosa-Fox, Nicolás ; Esquivias, Luis ; Morales-Florez, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7cdd527751546d01d0a2a616a3e8b5465decd9f6f43e954e2e74ed415a40b37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerogels</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>cryogels</topic><topic>Deformation</topic><topic>etc.</topic><topic>Gelation</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Nano- and macroporous materials (aerogels</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Stress concentration</topic><topic>Structural hierarchy</topic><topic>Synthesis</topic><topic>xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>Mesa-Díaz, María del Mar</creatorcontrib><creatorcontrib>de los Santos, Desirée</creatorcontrib><creatorcontrib>Reyes-Peces, María V.</creatorcontrib><creatorcontrib>Díaz-Fraile, José A.</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><creatorcontrib>Esquivias, Luis</creatorcontrib><creatorcontrib>Morales-Florez, Victor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piñero, Manuel</au><au>Mesa-Díaz, María del Mar</au><au>de los Santos, Desirée</au><au>Reyes-Peces, María V.</au><au>Díaz-Fraile, José A.</au><au>de la Rosa-Fox, Nicolás</au><au>Esquivias, Luis</au><au>Morales-Florez, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>391</spage><epage>399</epage><pages>391-399</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm
3
. The structural analyses (N
2
physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m
2
/g and porous volumes above 4.0 cm
3
/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4645-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4120-2832</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.391-399 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2259525556 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerogels Carbon Carbon nanotubes Ceramics Chemistry and Materials Science Composites Compression tests Compressive strength cryogels Deformation etc. Gelation Glass Inorganic Chemistry Materials Science Mechanical properties Nanoparticles Nanotechnology Nanotubes Natural Materials Optical and Electronic Materials Original Paper: Nano- and macroporous materials (aerogels Porous materials Porous media Silica Silicon dioxide Sol-gel processes Stress concentration Structural hierarchy Synthesis xerogels |
title | Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforced%20silica-carbon%20nanotube%20monolithic%20aerogels%20synthesised%20by%20rapid%20controlled%20gelation&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Pi%C3%B1ero,%20Manuel&rft.date=2018-05-01&rft.volume=86&rft.issue=2&rft.spage=391&rft.epage=399&rft.pages=391-399&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4645-7&rft_dat=%3Cproquest_cross%3E2031762505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259525556&rft_id=info:pmid/&rfr_iscdi=true |