Rapid fabrication of hybrid aerogels and 3D printed porous materials

In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.239-254
1. Verfasser: Bertino, M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 239
container_title Journal of sol-gel science and technology
container_volume 86
creator Bertino, M. F.
description In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.
doi_str_mv 10.1007/s10971-018-4649-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259525034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031762753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4CnqMz-Wjao-z6BQuC6Dkkbbp22W1q0h72v7elgic9PQbeezPzI-Qa4RYB9F1CKDQywJzJTBZMnJAFKi2YzGV2ShZQ8JyBBn1OLlLaAYCSqBdk_Wa7pqK1dbEpbd-Eloaafh7HsaLWx7D1-0RtW1Gxpl1s2t5XtAsxDIkebO9jY_fpkpzVo_irH12Sj8eH99Uz27w-vazuN6wUUvYM0YqMa515bnPkOneV8nlRqpwXSirrnJaVQ-c8z3xWlWit8sClcKUQtuBiSW7m3i6Gr8Gn3uzCENtxpeFcFYorEPJfFwjU4wlKjC6cXWUMKUVfm_G7g41Hg2AmpGZGakakZkJqpgyfM2kisfXxt_nv0DdiondH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259525034</pqid></control><display><type>article</type><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Bertino, M. F.</creator><creatorcontrib>Bertino, M. F.</creatorcontrib><description>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4649-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Aerogels ; Ceramics ; Chemistry and Materials Science ; Composites ; cryogels ; etc. ; Functionally gradient materials ; Glass ; Inorganic Chemistry ; Invited Paper: Nano- and macroporous materials (aerogels ; Materials Science ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Photolithography ; Pore size distribution ; Porosity ; Porous materials ; Scale (corrosion) ; Three dimensional printing ; xerogels</subject><ispartof>Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.239-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</citedby><cites>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</cites><orcidid>0000-0001-6029-0685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bertino, M. F.</creatorcontrib><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</description><subject>Additive manufacturing</subject><subject>Aerogels</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>cryogels</subject><subject>etc.</subject><subject>Functionally gradient materials</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper: Nano- and macroporous materials (aerogels</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Photolithography</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Scale (corrosion)</subject><subject>Three dimensional printing</subject><subject>xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LxDAQxYMouK7-Ad4CnqMz-Wjao-z6BQuC6Dkkbbp22W1q0h72v7elgic9PQbeezPzI-Qa4RYB9F1CKDQywJzJTBZMnJAFKi2YzGV2ShZQ8JyBBn1OLlLaAYCSqBdk_Wa7pqK1dbEpbd-Eloaafh7HsaLWx7D1-0RtW1Gxpl1s2t5XtAsxDIkebO9jY_fpkpzVo_irH12Sj8eH99Uz27w-vazuN6wUUvYM0YqMa515bnPkOneV8nlRqpwXSirrnJaVQ-c8z3xWlWit8sClcKUQtuBiSW7m3i6Gr8Gn3uzCENtxpeFcFYorEPJfFwjU4wlKjC6cXWUMKUVfm_G7g41Hg2AmpGZGakakZkJqpgyfM2kisfXxt_nv0DdiondH</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Bertino, M. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6029-0685</orcidid></search><sort><creationdate>20180501</creationdate><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><author>Bertino, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive manufacturing</topic><topic>Aerogels</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>cryogels</topic><topic>etc.</topic><topic>Functionally gradient materials</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper: Nano- and macroporous materials (aerogels</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Photolithography</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Scale (corrosion)</topic><topic>Three dimensional printing</topic><topic>xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertino, M. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertino, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid fabrication of hybrid aerogels and 3D printed porous materials</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4649-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6029-0685</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.239-254
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2259525034
source Springer Nature - Complete Springer Journals
subjects Additive manufacturing
Aerogels
Ceramics
Chemistry and Materials Science
Composites
cryogels
etc.
Functionally gradient materials
Glass
Inorganic Chemistry
Invited Paper: Nano- and macroporous materials (aerogels
Materials Science
Nanotechnology
Natural Materials
Optical and Electronic Materials
Photolithography
Pore size distribution
Porosity
Porous materials
Scale (corrosion)
Three dimensional printing
xerogels
title Rapid fabrication of hybrid aerogels and 3D printed porous materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20fabrication%20of%20hybrid%20aerogels%20and%203D%20printed%20porous%20materials&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Bertino,%20M.%20F.&rft.date=2018-05-01&rft.volume=86&rft.issue=2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4649-3&rft_dat=%3Cproquest_cross%3E2031762753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259525034&rft_id=info:pmid/&rfr_iscdi=true