Rapid fabrication of hybrid aerogels and 3D printed porous materials
In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distributio...
Gespeichert in:
Veröffentlicht in: | Journal of sol-gel science and technology 2018-05, Vol.86 (2), p.239-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Journal of sol-gel science and technology |
container_volume | 86 |
creator | Bertino, M. F. |
description | In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures. |
doi_str_mv | 10.1007/s10971-018-4649-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259525034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2031762753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4CnqMz-Wjao-z6BQuC6Dkkbbp22W1q0h72v7elgic9PQbeezPzI-Qa4RYB9F1CKDQywJzJTBZMnJAFKi2YzGV2ShZQ8JyBBn1OLlLaAYCSqBdk_Wa7pqK1dbEpbd-Eloaafh7HsaLWx7D1-0RtW1Gxpl1s2t5XtAsxDIkebO9jY_fpkpzVo_irH12Sj8eH99Uz27w-vazuN6wUUvYM0YqMa515bnPkOneV8nlRqpwXSirrnJaVQ-c8z3xWlWit8sClcKUQtuBiSW7m3i6Gr8Gn3uzCENtxpeFcFYorEPJfFwjU4wlKjC6cXWUMKUVfm_G7g41Hg2AmpGZGakakZkJqpgyfM2kisfXxt_nv0DdiondH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259525034</pqid></control><display><type>article</type><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Bertino, M. F.</creator><creatorcontrib>Bertino, M. F.</creatorcontrib><description>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-018-4649-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Aerogels ; Ceramics ; Chemistry and Materials Science ; Composites ; cryogels ; etc. ; Functionally gradient materials ; Glass ; Inorganic Chemistry ; Invited Paper: Nano- and macroporous materials (aerogels ; Materials Science ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Photolithography ; Pore size distribution ; Porosity ; Porous materials ; Scale (corrosion) ; Three dimensional printing ; xerogels</subject><ispartof>Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.239-254</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Journal of Sol-Gel Science and Technology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</citedby><cites>FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</cites><orcidid>0000-0001-6029-0685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-018-4649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-018-4649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bertino, M. F.</creatorcontrib><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</description><subject>Additive manufacturing</subject><subject>Aerogels</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>cryogels</subject><subject>etc.</subject><subject>Functionally gradient materials</subject><subject>Glass</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper: Nano- and macroporous materials (aerogels</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Photolithography</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Scale (corrosion)</subject><subject>Three dimensional printing</subject><subject>xerogels</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LxDAQxYMouK7-Ad4CnqMz-Wjao-z6BQuC6Dkkbbp22W1q0h72v7elgic9PQbeezPzI-Qa4RYB9F1CKDQywJzJTBZMnJAFKi2YzGV2ShZQ8JyBBn1OLlLaAYCSqBdk_Wa7pqK1dbEpbd-Eloaafh7HsaLWx7D1-0RtW1Gxpl1s2t5XtAsxDIkebO9jY_fpkpzVo_irH12Sj8eH99Uz27w-vazuN6wUUvYM0YqMa515bnPkOneV8nlRqpwXSirrnJaVQ-c8z3xWlWit8sClcKUQtuBiSW7m3i6Gr8Gn3uzCENtxpeFcFYorEPJfFwjU4wlKjC6cXWUMKUVfm_G7g41Hg2AmpGZGakakZkJqpgyfM2kisfXxt_nv0DdiondH</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Bertino, M. F.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6029-0685</orcidid></search><sort><creationdate>20180501</creationdate><title>Rapid fabrication of hybrid aerogels and 3D printed porous materials</title><author>Bertino, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-11a362776e2a81278bd5e89c5829545abb74db1bbe26e6dc1aa5e0243bc33a923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive manufacturing</topic><topic>Aerogels</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>cryogels</topic><topic>etc.</topic><topic>Functionally gradient materials</topic><topic>Glass</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper: Nano- and macroporous materials (aerogels</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Photolithography</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Scale (corrosion)</topic><topic>Three dimensional printing</topic><topic>xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertino, M. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertino, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid fabrication of hybrid aerogels and 3D printed porous materials</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>86</volume><issue>2</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-018-4649-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6029-0685</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0707 |
ispartof | Journal of sol-gel science and technology, 2018-05, Vol.86 (2), p.239-254 |
issn | 0928-0707 1573-4846 |
language | eng |
recordid | cdi_proquest_journals_2259525034 |
source | Springer Nature - Complete Springer Journals |
subjects | Additive manufacturing Aerogels Ceramics Chemistry and Materials Science Composites cryogels etc. Functionally gradient materials Glass Inorganic Chemistry Invited Paper: Nano- and macroporous materials (aerogels Materials Science Nanotechnology Natural Materials Optical and Electronic Materials Photolithography Pore size distribution Porosity Porous materials Scale (corrosion) Three dimensional printing xerogels |
title | Rapid fabrication of hybrid aerogels and 3D printed porous materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20fabrication%20of%20hybrid%20aerogels%20and%203D%20printed%20porous%20materials&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Bertino,%20M.%20F.&rft.date=2018-05-01&rft.volume=86&rft.issue=2&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-018-4649-3&rft_dat=%3Cproquest_cross%3E2031762753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259525034&rft_id=info:pmid/&rfr_iscdi=true |