Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity
Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 1999-03, Vol.18 (3), p.289-301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 3 |
container_start_page | 289 |
container_title | Nonlinear dynamics |
container_volume | 18 |
creator | Ko, Jeonghwan Strganac, Thomas W Kurdila, Andrew J |
description | Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle. |
doi_str_mv | 10.1023/A:1008323629064 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2259490394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259490394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</originalsourceid><addsrcrecordid>eNotjT1PwzAURS0EEqUws1piDrw8u4nNFlW0IEUwtIhuleMP6hLFxXFA5ddTUaY7nKNzCbnO4TYHZHfVfQ4gGLICJRT8hIzySckyLOTqlIxAIs9AwuqcXPT9FgAYghgRVxm1S_7L0pm1plH6g9a-syr6H5V86KgLkaaNpdPQpRhaGhxVdLnfea1a-ua7d7qw-s_89mlDFykOOg3xAJ9D1x5TaX9Jzpxqe3v1v2PyOntYTh-z-mX-NK3qTCOWKbOTUrOScTSldUyYBjUX1oI0ygIa3ihR6sZJboxpBAchC-AoGuF4nhecszG5OXZ3MXwOtk_rbRhid7hcI04kl8AkZ78dX1l7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259490394</pqid></control><display><type>article</type><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><source>SpringerLink Journals</source><creator>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</creator><creatorcontrib>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</creatorcontrib><description>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1008323629064</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Actuators ; Adaptive control ; Algebra ; Closed loops ; Control methods ; Feedback control ; Feedback linearization ; Lie groups ; Nonlinear control ; Nonlinear feedback ; Nonlinearity ; Parameterization ; Pitch (inclination) ; Stability ; Trailing edges</subject><ispartof>Nonlinear dynamics, 1999-03, Vol.18 (3), p.289-301</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ko, Jeonghwan</creatorcontrib><creatorcontrib>Strganac, Thomas W</creatorcontrib><creatorcontrib>Kurdila, Andrew J</creatorcontrib><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><title>Nonlinear dynamics</title><description>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Algebra</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Feedback control</subject><subject>Feedback linearization</subject><subject>Lie groups</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>Nonlinearity</subject><subject>Parameterization</subject><subject>Pitch (inclination)</subject><subject>Stability</subject><subject>Trailing edges</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjT1PwzAURS0EEqUws1piDrw8u4nNFlW0IEUwtIhuleMP6hLFxXFA5ddTUaY7nKNzCbnO4TYHZHfVfQ4gGLICJRT8hIzySckyLOTqlIxAIs9AwuqcXPT9FgAYghgRVxm1S_7L0pm1plH6g9a-syr6H5V86KgLkaaNpdPQpRhaGhxVdLnfea1a-ua7d7qw-s_89mlDFykOOg3xAJ9D1x5TaX9Jzpxqe3v1v2PyOntYTh-z-mX-NK3qTCOWKbOTUrOScTSldUyYBjUX1oI0ygIa3ihR6sZJboxpBAchC-AoGuF4nhecszG5OXZ3MXwOtk_rbRhid7hcI04kl8AkZ78dX1l7</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Ko, Jeonghwan</creator><creator>Strganac, Thomas W</creator><creator>Kurdila, Andrew J</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990301</creationdate><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><author>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Algebra</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Feedback control</topic><topic>Feedback linearization</topic><topic>Lie groups</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>Nonlinearity</topic><topic>Parameterization</topic><topic>Pitch (inclination)</topic><topic>Stability</topic><topic>Trailing edges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Jeonghwan</creatorcontrib><creatorcontrib>Strganac, Thomas W</creatorcontrib><creatorcontrib>Kurdila, Andrew J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Jeonghwan</au><au>Strganac, Thomas W</au><au>Kurdila, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</atitle><jtitle>Nonlinear dynamics</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>18</volume><issue>3</issue><spage>289</spage><epage>301</epage><pages>289-301</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008323629064</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 1999-03, Vol.18 (3), p.289-301 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259490394 |
source | SpringerLink Journals |
subjects | Actuators Adaptive control Algebra Closed loops Control methods Feedback control Feedback linearization Lie groups Nonlinear control Nonlinear feedback Nonlinearity Parameterization Pitch (inclination) Stability Trailing edges |
title | Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Feedback%20Linearization%20for%20the%20Control%20of%20a%20Typical%20Wing%20Section%20with%20Structural%20Nonlinearity&rft.jtitle=Nonlinear%20dynamics&rft.au=Ko,%20Jeonghwan&rft.date=1999-03-01&rft.volume=18&rft.issue=3&rft.spage=289&rft.epage=301&rft.pages=289-301&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1008323629064&rft_dat=%3Cproquest%3E2259490394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259490394&rft_id=info:pmid/&rfr_iscdi=true |