Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity

Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 1999-03, Vol.18 (3), p.289-301
Hauptverfasser: Ko, Jeonghwan, Strganac, Thomas W, Kurdila, Andrew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 3
container_start_page 289
container_title Nonlinear dynamics
container_volume 18
creator Ko, Jeonghwan
Strganac, Thomas W
Kurdila, Andrew J
description Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.
doi_str_mv 10.1023/A:1008323629064
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2259490394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259490394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</originalsourceid><addsrcrecordid>eNotjT1PwzAURS0EEqUws1piDrw8u4nNFlW0IEUwtIhuleMP6hLFxXFA5ddTUaY7nKNzCbnO4TYHZHfVfQ4gGLICJRT8hIzySckyLOTqlIxAIs9AwuqcXPT9FgAYghgRVxm1S_7L0pm1plH6g9a-syr6H5V86KgLkaaNpdPQpRhaGhxVdLnfea1a-ua7d7qw-s_89mlDFykOOg3xAJ9D1x5TaX9Jzpxqe3v1v2PyOntYTh-z-mX-NK3qTCOWKbOTUrOScTSldUyYBjUX1oI0ygIa3ihR6sZJboxpBAchC-AoGuF4nhecszG5OXZ3MXwOtk_rbRhid7hcI04kl8AkZ78dX1l7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259490394</pqid></control><display><type>article</type><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><source>SpringerLink Journals</source><creator>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</creator><creatorcontrib>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</creatorcontrib><description>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1008323629064</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Actuators ; Adaptive control ; Algebra ; Closed loops ; Control methods ; Feedback control ; Feedback linearization ; Lie groups ; Nonlinear control ; Nonlinear feedback ; Nonlinearity ; Parameterization ; Pitch (inclination) ; Stability ; Trailing edges</subject><ispartof>Nonlinear dynamics, 1999-03, Vol.18 (3), p.289-301</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ko, Jeonghwan</creatorcontrib><creatorcontrib>Strganac, Thomas W</creatorcontrib><creatorcontrib>Kurdila, Andrew J</creatorcontrib><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><title>Nonlinear dynamics</title><description>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Algebra</subject><subject>Closed loops</subject><subject>Control methods</subject><subject>Feedback control</subject><subject>Feedback linearization</subject><subject>Lie groups</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>Nonlinearity</subject><subject>Parameterization</subject><subject>Pitch (inclination)</subject><subject>Stability</subject><subject>Trailing edges</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjT1PwzAURS0EEqUws1piDrw8u4nNFlW0IEUwtIhuleMP6hLFxXFA5ddTUaY7nKNzCbnO4TYHZHfVfQ4gGLICJRT8hIzySckyLOTqlIxAIs9AwuqcXPT9FgAYghgRVxm1S_7L0pm1plH6g9a-syr6H5V86KgLkaaNpdPQpRhaGhxVdLnfea1a-ua7d7qw-s_89mlDFykOOg3xAJ9D1x5TaX9Jzpxqe3v1v2PyOntYTh-z-mX-NK3qTCOWKbOTUrOScTSldUyYBjUX1oI0ygIa3ihR6sZJboxpBAchC-AoGuF4nhecszG5OXZ3MXwOtk_rbRhid7hcI04kl8AkZ78dX1l7</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Ko, Jeonghwan</creator><creator>Strganac, Thomas W</creator><creator>Kurdila, Andrew J</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990301</creationdate><title>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</title><author>Ko, Jeonghwan ; Strganac, Thomas W ; Kurdila, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-e57c37342d7ef38db2c48ee09dae02d4ba87cbf94dddb8408960428b8f4116443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Algebra</topic><topic>Closed loops</topic><topic>Control methods</topic><topic>Feedback control</topic><topic>Feedback linearization</topic><topic>Lie groups</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>Nonlinearity</topic><topic>Parameterization</topic><topic>Pitch (inclination)</topic><topic>Stability</topic><topic>Trailing edges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Jeonghwan</creatorcontrib><creatorcontrib>Strganac, Thomas W</creatorcontrib><creatorcontrib>Kurdila, Andrew J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Jeonghwan</au><au>Strganac, Thomas W</au><au>Kurdila, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity</atitle><jtitle>Nonlinear dynamics</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>18</volume><issue>3</issue><spage>289</spage><epage>301</epage><pages>289-301</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008323629064</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 1999-03, Vol.18 (3), p.289-301
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259490394
source SpringerLink Journals
subjects Actuators
Adaptive control
Algebra
Closed loops
Control methods
Feedback control
Feedback linearization
Lie groups
Nonlinear control
Nonlinear feedback
Nonlinearity
Parameterization
Pitch (inclination)
Stability
Trailing edges
title Adaptive Feedback Linearization for the Control of a Typical Wing Section with Structural Nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Feedback%20Linearization%20for%20the%20Control%20of%20a%20Typical%20Wing%20Section%20with%20Structural%20Nonlinearity&rft.jtitle=Nonlinear%20dynamics&rft.au=Ko,%20Jeonghwan&rft.date=1999-03-01&rft.volume=18&rft.issue=3&rft.spage=289&rft.epage=301&rft.pages=289-301&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1008323629064&rft_dat=%3Cproquest%3E2259490394%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259490394&rft_id=info:pmid/&rfr_iscdi=true