Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy

We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 1999-11, Vol.20 (3), p.197-220
Hauptverfasser: Ashhab, M, Salapaka, M V, Dahleh, M, Mezić, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 3
container_start_page 197
container_title Nonlinear dynamics
container_volume 20
creator Ashhab, M
Salapaka, M V
Dahleh, M
Mezić, I
description We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.
doi_str_mv 10.1023/A:1008342408448
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2259488241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259488241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-552c82b40bb8be96d6a2b54ce825f740a4abe5f0dc8ab30eaca312ca7a0e39e03</originalsourceid><addsrcrecordid>eNotjktLAzEURoMoWKtrtwHXo3dukjZxV99Ci-IDuis36R1JHZM6aQv99xbq6uPA4fAJcV7DZQ2orkbXNYBVGjVYre2B6NVmqCocuOmh6IFDXYGD6bE4KWUBAArB9sTbhNsUv_OmuqHCc3m3TfQTA7VylKjdllhkbuQkhi4HSqvY8oa7ImOS7ztOMX3J1y573isl5OX2VBw11BY--9---Hy4_7h9qsYvj8-3o3EV0KlVZQwGi16D99azG8wHhN7owBZNM9RAmjybBubBklfAFEjVGGhIwMoxqL642HeXXf5dc1nNFnnd7V6XGaJx2lrUtfoDnxJS6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259488241</pqid></control><display><type>article</type><title>Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy</title><source>Springer Nature - Complete Springer Journals</source><creator>Ashhab, M ; Salapaka, M V ; Dahleh, M ; Mezić, I</creator><creatorcontrib>Ashhab, M ; Salapaka, M V ; Dahleh, M ; Mezić, I</creatorcontrib><description>We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1008342408448</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Controllers ; Mathematical models ; Microscopes ; Parameters ; Physical properties ; Scanning probe microscopy</subject><ispartof>Nonlinear dynamics, 1999-11, Vol.20 (3), p.197-220</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-552c82b40bb8be96d6a2b54ce825f740a4abe5f0dc8ab30eaca312ca7a0e39e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ashhab, M</creatorcontrib><creatorcontrib>Salapaka, M V</creatorcontrib><creatorcontrib>Dahleh, M</creatorcontrib><creatorcontrib>Mezić, I</creatorcontrib><title>Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy</title><title>Nonlinear dynamics</title><description>We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Controllers</subject><subject>Mathematical models</subject><subject>Microscopes</subject><subject>Parameters</subject><subject>Physical properties</subject><subject>Scanning probe microscopy</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjktLAzEURoMoWKtrtwHXo3dukjZxV99Ci-IDuis36R1JHZM6aQv99xbq6uPA4fAJcV7DZQ2orkbXNYBVGjVYre2B6NVmqCocuOmh6IFDXYGD6bE4KWUBAArB9sTbhNsUv_OmuqHCc3m3TfQTA7VylKjdllhkbuQkhi4HSqvY8oa7ImOS7ztOMX3J1y573isl5OX2VBw11BY--9---Hy4_7h9qsYvj8-3o3EV0KlVZQwGi16D99azG8wHhN7owBZNM9RAmjybBubBklfAFEjVGGhIwMoxqL642HeXXf5dc1nNFnnd7V6XGaJx2lrUtfoDnxJS6Q</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Ashhab, M</creator><creator>Salapaka, M V</creator><creator>Dahleh, M</creator><creator>Mezić, I</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19991101</creationdate><title>Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy</title><author>Ashhab, M ; Salapaka, M V ; Dahleh, M ; Mezić, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-552c82b40bb8be96d6a2b54ce825f740a4abe5f0dc8ab30eaca312ca7a0e39e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Controllers</topic><topic>Mathematical models</topic><topic>Microscopes</topic><topic>Parameters</topic><topic>Physical properties</topic><topic>Scanning probe microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashhab, M</creatorcontrib><creatorcontrib>Salapaka, M V</creatorcontrib><creatorcontrib>Dahleh, M</creatorcontrib><creatorcontrib>Mezić, I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashhab, M</au><au>Salapaka, M V</au><au>Dahleh, M</au><au>Mezić, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy</atitle><jtitle>Nonlinear dynamics</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>20</volume><issue>3</issue><spage>197</spage><epage>220</epage><pages>197-220</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008342408448</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 1999-11, Vol.20 (3), p.197-220
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259488241
source Springer Nature - Complete Springer Journals
subjects Atomic force microscopes
Atomic force microscopy
Controllers
Mathematical models
Microscopes
Parameters
Physical properties
Scanning probe microscopy
title Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melnikov-Based%20Dynamical%20Analysis%20of%20Microcantilevers%20in%20Scanning%20Probe%20Microscopy&rft.jtitle=Nonlinear%20dynamics&rft.au=Ashhab,%20M&rft.date=1999-11-01&rft.volume=20&rft.issue=3&rft.spage=197&rft.epage=220&rft.pages=197-220&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1008342408448&rft_dat=%3Cproquest%3E2259488241%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259488241&rft_id=info:pmid/&rfr_iscdi=true