Experimental Observation of Chaotic Motion in a Rotor with Rubbing

This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 1998-05, Vol.16 (1), p.55-70
Hauptverfasser: Piccoli, Humberto C, Weber, Hans I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 55
container_title Nonlinear dynamics
container_volume 16
creator Piccoli, Humberto C
Weber, Hans I
description This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponents are obtained as tools for deciding about the existence of chaotic behaviour. The method is applied to measurements of the lateral displacement of a vertical rotor experiencing rubbing and in some signals chaos is observed. The work concludes that the possibility of chaotic motion is well determined with the observation of Poincaré diagrams and computation of Lyapunov exponents. Correlation dimensions computations, strongly influenced by noise, are not convenient tools for investigation of chaotic behaviour in signals generated by mechanical systems.
doi_str_mv 10.1023/A:1008284317724
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2259486944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259486944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-f258b55141b56bceaaa962c10fddf5367781244333bd7f3952187eff2e0754193</originalsourceid><addsrcrecordid>eNotjc9LwzAYhoMoWKdnrwHP1S9fkibxNsv8AZPBUNhtJG3iMmYz21T98x3q6YUHnucl5JLBNQPkN9NbBqBRC86UQnFECiYVL7Eyq2NSgEFRgoHVKTkbhi0AcARdkLvZ99738d132e7owg2-_7Q5po6mQOuNTTk29Dn9kthRS5cpp55-xbyhy9G52L2dk5Ngd4O_-N8Jeb2fvdSP5Xzx8FRP52WDqHIZUGonJRPMyco13lprKmwYhLYNkldKaYZCcM5dqwI3EplWPgT0oKRghk_I1V9336eP0Q95vU1j3x0u14jSCF2Zg_4DT_9LDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259486944</pqid></control><display><type>article</type><title>Experimental Observation of Chaotic Motion in a Rotor with Rubbing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Piccoli, Humberto C ; Weber, Hans I</creator><creatorcontrib>Piccoli, Humberto C ; Weber, Hans I</creatorcontrib><description>This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponents are obtained as tools for deciding about the existence of chaotic behaviour. The method is applied to measurements of the lateral displacement of a vertical rotor experiencing rubbing and in some signals chaos is observed. The work concludes that the possibility of chaotic motion is well determined with the observation of Poincaré diagrams and computation of Lyapunov exponents. Correlation dimensions computations, strongly influenced by noise, are not convenient tools for investigation of chaotic behaviour in signals generated by mechanical systems.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1023/A:1008284317724</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Chaos theory ; Lateral displacement ; Liapunov exponents ; Mechanical systems ; Rubbing</subject><ispartof>Nonlinear dynamics, 1998-05, Vol.16 (1), p.55-70</ispartof><rights>Nonlinear Dynamics is a copyright of Springer, (1998). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-f258b55141b56bceaaa962c10fddf5367781244333bd7f3952187eff2e0754193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piccoli, Humberto C</creatorcontrib><creatorcontrib>Weber, Hans I</creatorcontrib><title>Experimental Observation of Chaotic Motion in a Rotor with Rubbing</title><title>Nonlinear dynamics</title><description>This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponents are obtained as tools for deciding about the existence of chaotic behaviour. The method is applied to measurements of the lateral displacement of a vertical rotor experiencing rubbing and in some signals chaos is observed. The work concludes that the possibility of chaotic motion is well determined with the observation of Poincaré diagrams and computation of Lyapunov exponents. Correlation dimensions computations, strongly influenced by noise, are not convenient tools for investigation of chaotic behaviour in signals generated by mechanical systems.</description><subject>Chaos theory</subject><subject>Lateral displacement</subject><subject>Liapunov exponents</subject><subject>Mechanical systems</subject><subject>Rubbing</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotjc9LwzAYhoMoWKdnrwHP1S9fkibxNsv8AZPBUNhtJG3iMmYz21T98x3q6YUHnucl5JLBNQPkN9NbBqBRC86UQnFECiYVL7Eyq2NSgEFRgoHVKTkbhi0AcARdkLvZ99738d132e7owg2-_7Q5po6mQOuNTTk29Dn9kthRS5cpp55-xbyhy9G52L2dk5Ngd4O_-N8Jeb2fvdSP5Xzx8FRP52WDqHIZUGonJRPMyco13lprKmwYhLYNkldKaYZCcM5dqwI3EplWPgT0oKRghk_I1V9336eP0Q95vU1j3x0u14jSCF2Zg_4DT_9LDg</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Piccoli, Humberto C</creator><creator>Weber, Hans I</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980501</creationdate><title>Experimental Observation of Chaotic Motion in a Rotor with Rubbing</title><author>Piccoli, Humberto C ; Weber, Hans I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-f258b55141b56bceaaa962c10fddf5367781244333bd7f3952187eff2e0754193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Chaos theory</topic><topic>Lateral displacement</topic><topic>Liapunov exponents</topic><topic>Mechanical systems</topic><topic>Rubbing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piccoli, Humberto C</creatorcontrib><creatorcontrib>Weber, Hans I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piccoli, Humberto C</au><au>Weber, Hans I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Observation of Chaotic Motion in a Rotor with Rubbing</atitle><jtitle>Nonlinear dynamics</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>16</volume><issue>1</issue><spage>55</spage><epage>70</epage><pages>55-70</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper presents an application for chaotic motion identification in a measured signal obtained in an experiment. The method of state space reconstruction with delay co-ordinates with the dynamic evolution described by a map is used. Poincaré diagrams, correlation dimensions and Lyapunov exponents are obtained as tools for deciding about the existence of chaotic behaviour. The method is applied to measurements of the lateral displacement of a vertical rotor experiencing rubbing and in some signals chaos is observed. The work concludes that the possibility of chaotic motion is well determined with the observation of Poincaré diagrams and computation of Lyapunov exponents. Correlation dimensions computations, strongly influenced by noise, are not convenient tools for investigation of chaotic behaviour in signals generated by mechanical systems.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008284317724</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 1998-05, Vol.16 (1), p.55-70
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259486944
source SpringerLink Journals - AutoHoldings
subjects Chaos theory
Lateral displacement
Liapunov exponents
Mechanical systems
Rubbing
title Experimental Observation of Chaotic Motion in a Rotor with Rubbing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Observation%20of%20Chaotic%20Motion%20in%20a%20Rotor%20with%20Rubbing&rft.jtitle=Nonlinear%20dynamics&rft.au=Piccoli,%20Humberto%20C&rft.date=1998-05-01&rft.volume=16&rft.issue=1&rft.spage=55&rft.epage=70&rft.pages=55-70&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1023/A:1008284317724&rft_dat=%3Cproquest%3E2259486944%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259486944&rft_id=info:pmid/&rfr_iscdi=true