Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization
The composite recurrent Laguerre orthogonal polynomials neural network (NN) control system using altered particle swarm optimization (PSO) is developed for controlling the V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor to obtain better control per...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2015-08, Vol.81 (3), p.1219-1245 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1245 |
---|---|
container_issue | 3 |
container_start_page | 1219 |
container_title | Nonlinear dynamics |
container_volume | 81 |
creator | Lin, Chih-Hong |
description | The composite recurrent Laguerre orthogonal polynomials neural network (NN) control system using altered particle swarm optimization (PSO) is developed for controlling the V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor to obtain better control performance. The simplified dynamic and kinematic models of a V-belt CVT system are derived by law of conservation. The control system consists of an inspector control, a recurrent Laguerre orthogonal polynomials NN control with adaptation law, and a recouped control with estimation law. Moreover, the adaptation law of online parameters in the recurrent Laguerre orthogonal polynomials NN is originated from Lyapunov stability theorem. Additionally, two optimal learning rates of the parameters by means of altered PSO are posed in order to achieve better convergence. At last, comparative studies shown by experimental results are illustrated to demonstrate the control performance of the proposed control scheme. |
doi_str_mv | 10.1007/s11071-015-2064-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259470992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259470992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ea1ae6682a235653afd9f7e09eb4c448c17c9ae2aa841a18d59dfed550abb4223</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxYMoOK5-AG8Bz-0m6b85yqDuwoAXhb2FmnT1bNbupK1Ku_R-JD-lPY7gyVM9it97BfWEeKvVe61Ue81aq1YXSteFUU1VtM_ETtdtWZjG3j0XO2VNVSir7l6KV8wPSqnSqG4nfu3TNCcOGSWhX4gwZnmA04KblInyfTqlCKOc07jGNAUYWUZcaFtFzI-Jvst-jTAFL32KmdIoh0R_dIhLWnhc5U-gAMcRZSaIPAXmkKLklTNOcuEQTxLGjIS9nIFy8BvKj0CTTHMOU3iCvBleixfDdh3f_J1X4tunj1_3N8Xhy-fb_YdD4cuuyQWCBmyazoAp66YuYejt0KKyeKx8VXVet94CGoCu0qC7vrb9gH1dKzgeK2PKK_HukjtT-rEgZ_eQFtp-wM6Y2latsvZM6QvlKTETDm6mMAGtTit3rsRdKnFbJe5ciWs3j7l4eGPjCelf8v9NvwGGY5ZS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259470992</pqid></control><display><type>article</type><title>Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Chih-Hong</creator><creatorcontrib>Lin, Chih-Hong</creatorcontrib><description>The composite recurrent Laguerre orthogonal polynomials neural network (NN) control system using altered particle swarm optimization (PSO) is developed for controlling the V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor to obtain better control performance. The simplified dynamic and kinematic models of a V-belt CVT system are derived by law of conservation. The control system consists of an inspector control, a recurrent Laguerre orthogonal polynomials NN control with adaptation law, and a recouped control with estimation law. Moreover, the adaptation law of online parameters in the recurrent Laguerre orthogonal polynomials NN is originated from Lyapunov stability theorem. Additionally, two optimal learning rates of the parameters by means of altered PSO are posed in order to achieve better convergence. At last, comparative studies shown by experimental results are illustrated to demonstrate the control performance of the proposed control scheme.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2064-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptation ; Automotive Engineering ; Classical Mechanics ; Comparative studies ; Continuously variable ; Control ; Control systems ; Dynamic control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Neural networks ; Original Paper ; Parameters ; Particle swarm optimization ; Permanent magnets ; Polynomials ; Synchronous motors ; Transmissions (automotive) ; Vibration</subject><ispartof>Nonlinear dynamics, 2015-08, Vol.81 (3), p.1219-1245</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-ea1ae6682a235653afd9f7e09eb4c448c17c9ae2aa841a18d59dfed550abb4223</citedby><cites>FETCH-LOGICAL-c386t-ea1ae6682a235653afd9f7e09eb4c448c17c9ae2aa841a18d59dfed550abb4223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2064-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2064-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lin, Chih-Hong</creatorcontrib><title>Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>The composite recurrent Laguerre orthogonal polynomials neural network (NN) control system using altered particle swarm optimization (PSO) is developed for controlling the V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor to obtain better control performance. The simplified dynamic and kinematic models of a V-belt CVT system are derived by law of conservation. The control system consists of an inspector control, a recurrent Laguerre orthogonal polynomials NN control with adaptation law, and a recouped control with estimation law. Moreover, the adaptation law of online parameters in the recurrent Laguerre orthogonal polynomials NN is originated from Lyapunov stability theorem. Additionally, two optimal learning rates of the parameters by means of altered PSO are posed in order to achieve better convergence. At last, comparative studies shown by experimental results are illustrated to demonstrate the control performance of the proposed control scheme.</description><subject>Adaptation</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Comparative studies</subject><subject>Continuously variable</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamic control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Permanent magnets</subject><subject>Polynomials</subject><subject>Synchronous motors</subject><subject>Transmissions (automotive)</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU-LFDEQxYMoOK5-AG8Bz-0m6b85yqDuwoAXhb2FmnT1bNbupK1Ku_R-JD-lPY7gyVM9it97BfWEeKvVe61Ue81aq1YXSteFUU1VtM_ETtdtWZjG3j0XO2VNVSir7l6KV8wPSqnSqG4nfu3TNCcOGSWhX4gwZnmA04KblInyfTqlCKOc07jGNAUYWUZcaFtFzI-Jvst-jTAFL32KmdIoh0R_dIhLWnhc5U-gAMcRZSaIPAXmkKLklTNOcuEQTxLGjIS9nIFy8BvKj0CTTHMOU3iCvBleixfDdh3f_J1X4tunj1_3N8Xhy-fb_YdD4cuuyQWCBmyazoAp66YuYejt0KKyeKx8VXVet94CGoCu0qC7vrb9gH1dKzgeK2PKK_HukjtT-rEgZ_eQFtp-wM6Y2latsvZM6QvlKTETDm6mMAGtTit3rsRdKnFbJe5ciWs3j7l4eGPjCelf8v9NvwGGY5ZS</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Lin, Chih-Hong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150801</creationdate><title>Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization</title><author>Lin, Chih-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ea1ae6682a235653afd9f7e09eb4c448c17c9ae2aa841a18d59dfed550abb4223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Comparative studies</topic><topic>Continuously variable</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamic control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Permanent magnets</topic><topic>Polynomials</topic><topic>Synchronous motors</topic><topic>Transmissions (automotive)</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chih-Hong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chih-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>81</volume><issue>3</issue><spage>1219</spage><epage>1245</epage><pages>1219-1245</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>The composite recurrent Laguerre orthogonal polynomials neural network (NN) control system using altered particle swarm optimization (PSO) is developed for controlling the V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor to obtain better control performance. The simplified dynamic and kinematic models of a V-belt CVT system are derived by law of conservation. The control system consists of an inspector control, a recurrent Laguerre orthogonal polynomials NN control with adaptation law, and a recouped control with estimation law. Moreover, the adaptation law of online parameters in the recurrent Laguerre orthogonal polynomials NN is originated from Lyapunov stability theorem. Additionally, two optimal learning rates of the parameters by means of altered PSO are posed in order to achieve better convergence. At last, comparative studies shown by experimental results are illustrated to demonstrate the control performance of the proposed control scheme.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2064-7</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2015-08, Vol.81 (3), p.1219-1245 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259470992 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptation Automotive Engineering Classical Mechanics Comparative studies Continuously variable Control Control systems Dynamic control Dynamical Systems Engineering Mechanical Engineering Neural networks Original Paper Parameters Particle swarm optimization Permanent magnets Polynomials Synchronous motors Transmissions (automotive) Vibration |
title | Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20recurrent%20Laguerre%20orthogonal%20polynomials%20neural%20network%20dynamic%20control%20for%20continuously%20variable%20transmission%20system%20using%20altered%20particle%20swarm%20optimization&rft.jtitle=Nonlinear%20dynamics&rft.au=Lin,%20Chih-Hong&rft.date=2015-08-01&rft.volume=81&rft.issue=3&rft.spage=1219&rft.epage=1245&rft.pages=1219-1245&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2064-7&rft_dat=%3Cproquest_cross%3E2259470992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259470992&rft_id=info:pmid/&rfr_iscdi=true |