Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation

In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2015-10, Vol.82 (1-2), p.311-318
1. Verfasser: Na, Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1-2
container_start_page 311
container_title Nonlinear dynamics
container_volume 82
creator Na, Liu
description In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.
doi_str_mv 10.1007/s11071-015-2159-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259465257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259465257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuAG0WiOWmbNktn8IYDulCYXUg7qdOxbWaSFJlX8Dl8E1_M1AquXB34Lx-HH6FjoBdAaXrpAGgKhEJCGCSCwA4aQZJGhHEx30UjKlhMqKDzfXTg3IpSGjGajdDH5OuzeKu7doG9Va0rjW2Ur0yLVZCarvYVcaaufFDC7XrL4ZDCfqnxaXQOZ2RRNbp1wVA1njw8Yb3pBsR75Zd4ousar029bU1Tqdr9gN22yQO1wIVp1p3_iR-ivTL4-uj3jtHLzfXz9I7MHm_vp1czUkQZ9yRPSy54XmYcQC-oSCDOFkpRxSHOS8ESUQLkPGEJT-NcpEXKdJEJxbM44VFcRGN0MnDX1mw67bxcmc6G551koR331TSkYEgV1jhndSnXtmqU3Uqgsp9cDpPLMLnsJ5cQOmzouJBtX7X9I_9f-gbk4IZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259465257</pqid></control><display><type>article</type><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Na, Liu</creator><creatorcontrib>Na, Liu</creatorcontrib><description>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2159-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Combinatorial analysis ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Polynomials ; Solitary waves ; Transformations ; Vibration</subject><ispartof>Nonlinear dynamics, 2015-10, Vol.82 (1-2), p.311-318</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</citedby><cites>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2159-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2159-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Na, Liu</creatorcontrib><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Combinatorial analysis</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Solitary waves</subject><subject>Transformations</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuAG0WiOWmbNktn8IYDulCYXUg7qdOxbWaSFJlX8Dl8E1_M1AquXB34Lx-HH6FjoBdAaXrpAGgKhEJCGCSCwA4aQZJGhHEx30UjKlhMqKDzfXTg3IpSGjGajdDH5OuzeKu7doG9Va0rjW2Ur0yLVZCarvYVcaaufFDC7XrL4ZDCfqnxaXQOZ2RRNbp1wVA1njw8Yb3pBsR75Zd4ousar029bU1Tqdr9gN22yQO1wIVp1p3_iR-ivTL4-uj3jtHLzfXz9I7MHm_vp1czUkQZ9yRPSy54XmYcQC-oSCDOFkpRxSHOS8ESUQLkPGEJT-NcpEXKdJEJxbM44VFcRGN0MnDX1mw67bxcmc6G551koR331TSkYEgV1jhndSnXtmqU3Uqgsp9cDpPLMLnsJ5cQOmzouJBtX7X9I_9f-gbk4IZF</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Na, Liu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151001</creationdate><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><author>Na, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Combinatorial analysis</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Solitary waves</topic><topic>Transformations</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Na, Liu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Na, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>82</volume><issue>1-2</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2159-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-10, Vol.82 (1-2), p.311-318
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259465257
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Combinatorial analysis
Control
Dynamical Systems
Engineering
Mechanical Engineering
Original Paper
Polynomials
Solitary waves
Transformations
Vibration
title Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B%C3%A4cklund%20transformation%20and%20multi-soliton%20solutions%20for%20the%20(3+1)-dimensional%20BKP%20equation%20with%20Bell%20polynomials%20and%20symbolic%20computation&rft.jtitle=Nonlinear%20dynamics&rft.au=Na,%20Liu&rft.date=2015-10-01&rft.volume=82&rft.issue=1-2&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2159-1&rft_dat=%3Cproquest_cross%3E2259465257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259465257&rft_id=info:pmid/&rfr_iscdi=true