Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation
In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2015-10, Vol.82 (1-2), p.311-318 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1-2 |
container_start_page | 311 |
container_title | Nonlinear dynamics |
container_volume | 82 |
creator | Na, Liu |
description | In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form. |
doi_str_mv | 10.1007/s11071-015-2159-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259465257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259465257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuAG0WiOWmbNktn8IYDulCYXUg7qdOxbWaSFJlX8Dl8E1_M1AquXB34Lx-HH6FjoBdAaXrpAGgKhEJCGCSCwA4aQZJGhHEx30UjKlhMqKDzfXTg3IpSGjGajdDH5OuzeKu7doG9Va0rjW2Ur0yLVZCarvYVcaaufFDC7XrL4ZDCfqnxaXQOZ2RRNbp1wVA1njw8Yb3pBsR75Zd4ousar029bU1Tqdr9gN22yQO1wIVp1p3_iR-ivTL4-uj3jtHLzfXz9I7MHm_vp1czUkQZ9yRPSy54XmYcQC-oSCDOFkpRxSHOS8ESUQLkPGEJT-NcpEXKdJEJxbM44VFcRGN0MnDX1mw67bxcmc6G551koR331TSkYEgV1jhndSnXtmqU3Uqgsp9cDpPLMLnsJ5cQOmzouJBtX7X9I_9f-gbk4IZF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259465257</pqid></control><display><type>article</type><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Na, Liu</creator><creatorcontrib>Na, Liu</creatorcontrib><description>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2159-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Combinatorial analysis ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Polynomials ; Solitary waves ; Transformations ; Vibration</subject><ispartof>Nonlinear dynamics, 2015-10, Vol.82 (1-2), p.311-318</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</citedby><cites>FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2159-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2159-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Na, Liu</creatorcontrib><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Combinatorial analysis</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Solitary waves</subject><subject>Transformations</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuAG0WiOWmbNktn8IYDulCYXUg7qdOxbWaSFJlX8Dl8E1_M1AquXB34Lx-HH6FjoBdAaXrpAGgKhEJCGCSCwA4aQZJGhHEx30UjKlhMqKDzfXTg3IpSGjGajdDH5OuzeKu7doG9Va0rjW2Ur0yLVZCarvYVcaaufFDC7XrL4ZDCfqnxaXQOZ2RRNbp1wVA1njw8Yb3pBsR75Zd4ousar029bU1Tqdr9gN22yQO1wIVp1p3_iR-ivTL4-uj3jtHLzfXz9I7MHm_vp1czUkQZ9yRPSy54XmYcQC-oSCDOFkpRxSHOS8ESUQLkPGEJT-NcpEXKdJEJxbM44VFcRGN0MnDX1mw67bxcmc6G551koR331TSkYEgV1jhndSnXtmqU3Uqgsp9cDpPLMLnsJ5cQOmzouJBtX7X9I_9f-gbk4IZF</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Na, Liu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151001</creationdate><title>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</title><author>Na, Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-b7f696bf8611ed095148daa0a614bf9259f11b6525674b97c72ec89a6845634c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Combinatorial analysis</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Solitary waves</topic><topic>Transformations</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Na, Liu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Na, Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>82</volume><issue>1-2</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, the binary Bell polynomials are employed to find the bilinear form, bilinear Bäcklund transformation and Lax pair for the (3+1)-dimensional BKP equation. Based on Hirota’s bilinear form and three-wave method, multi-soliton solutions are presented. Furthermore, a new bilinear Bäcklund transformation is constructed via applying a gauge transformation to the Bäcklund transformation in bilinear form.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2159-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2015-10, Vol.82 (1-2), p.311-318 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259465257 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Combinatorial analysis Control Dynamical Systems Engineering Mechanical Engineering Original Paper Polynomials Solitary waves Transformations Vibration |
title | Bäcklund transformation and multi-soliton solutions for the (3+1)-dimensional BKP equation with Bell polynomials and symbolic computation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B%C3%A4cklund%20transformation%20and%20multi-soliton%20solutions%20for%20the%20(3+1)-dimensional%20BKP%20equation%20with%20Bell%20polynomials%20and%20symbolic%20computation&rft.jtitle=Nonlinear%20dynamics&rft.au=Na,%20Liu&rft.date=2015-10-01&rft.volume=82&rft.issue=1-2&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2159-1&rft_dat=%3Cproquest_cross%3E2259465257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259465257&rft_id=info:pmid/&rfr_iscdi=true |