Dynamically consistent Jacobian inverse for non-holonomic robotic systems
This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016-07, Vol.85 (1), p.107-122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | Nonlinear dynamics |
container_volume | 85 |
creator | Tchoń, Krzysztof Ratajczak, Joanna |
description | This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a strict analogy with the original derivation of the dynamically consistent Jacobian inverse for holonomic systems. The analogy is founded on replacing a finite-dimensional configuration space of the manipulation robot by the space of control functions steering the non-holonomic system. Consequently, a curve in the space of control functions corresponds to the manipulator’s trajectory in the configuration space, whereas endogenous velocities and forces are defined as elements of the tangent and cotangent spaces to the control space. Three ways of introducing the dynamically consistent Jacobian inverse are proposed, referred to as the geometric method, the force method, and the optimization method. A crucial concept underlying all these methods is a Riemannian metric in the space of control functions of the non-holonomic system as well as in its operational space. It has been shown that, similarly as for holonomic systems, the dynamically consistent Jacobian inverse obtained prevents the transmission of certain internal forces acting in the system from the endogenous configuration space to the operational space. This property is illustrated with the example of the Pioneer 2DX mobile platform. Performance of the new Jacobian inverse is demonstrated in the context of motion planning of the rolling ball. |
doi_str_mv | 10.1007/s11071-016-2672-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259456766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259456766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-47e3d67af4b453c57afa6aa816dc4b69d8fbd4e4b0542f8e88c79bcf187e44353</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8P4G7AdTT3TJZSb5WCG4XuQpLJ6JRpUpOpdN7elBFcuTrnwP_9Bz4ArjC6wQjJ24wxkhgiLCARksD9EZhhLmm51OoYzJAiDCKFVqfgLOc1QogSVM_A4n4MZtM50_dj5WLIXR58GKoX46LtTKi68O1T9lUbUxVigJ-xjyEWokrRxqHMPBZkky_ASWv67C9_5zl4f3x4mz_D5evTYn63hI5yNUAmPW2ENC2zjFPHy2aEMTUWjWNWqKZubcM8s4gz0ta-rp1U1rW4lp4xyuk5uJ56tyl-7Xwe9DruUigvNSFcMS6kECWFp5RLMefkW71N3cakUWOkD8b0ZEwXY_pgTO8LQyYml2z48Omv-X_oB3pBcE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259456766</pqid></control><display><type>article</type><title>Dynamically consistent Jacobian inverse for non-holonomic robotic systems</title><source>SpringerLink Journals</source><creator>Tchoń, Krzysztof ; Ratajczak, Joanna</creator><creatorcontrib>Tchoń, Krzysztof ; Ratajczak, Joanna</creatorcontrib><description>This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a strict analogy with the original derivation of the dynamically consistent Jacobian inverse for holonomic systems. The analogy is founded on replacing a finite-dimensional configuration space of the manipulation robot by the space of control functions steering the non-holonomic system. Consequently, a curve in the space of control functions corresponds to the manipulator’s trajectory in the configuration space, whereas endogenous velocities and forces are defined as elements of the tangent and cotangent spaces to the control space. Three ways of introducing the dynamically consistent Jacobian inverse are proposed, referred to as the geometric method, the force method, and the optimization method. A crucial concept underlying all these methods is a Riemannian metric in the space of control functions of the non-holonomic system as well as in its operational space. It has been shown that, similarly as for holonomic systems, the dynamically consistent Jacobian inverse obtained prevents the transmission of certain internal forces acting in the system from the endogenous configuration space to the operational space. This property is illustrated with the example of the Pioneer 2DX mobile platform. Performance of the new Jacobian inverse is demonstrated in the context of motion planning of the rolling ball.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2672-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Configurations ; Control ; Control systems ; Dynamical Systems ; Engineering ; Internal forces ; Manipulators ; Mechanical Engineering ; Motion planning ; Optimization ; Original Paper ; Robot arms ; Robotics ; Steering ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-07, Vol.85 (1), p.107-122</ispartof><rights>The Author(s) 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved. © 2016. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-47e3d67af4b453c57afa6aa816dc4b69d8fbd4e4b0542f8e88c79bcf187e44353</citedby><cites>FETCH-LOGICAL-c359t-47e3d67af4b453c57afa6aa816dc4b69d8fbd4e4b0542f8e88c79bcf187e44353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-016-2672-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-016-2672-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tchoń, Krzysztof</creatorcontrib><creatorcontrib>Ratajczak, Joanna</creatorcontrib><title>Dynamically consistent Jacobian inverse for non-holonomic robotic systems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a strict analogy with the original derivation of the dynamically consistent Jacobian inverse for holonomic systems. The analogy is founded on replacing a finite-dimensional configuration space of the manipulation robot by the space of control functions steering the non-holonomic system. Consequently, a curve in the space of control functions corresponds to the manipulator’s trajectory in the configuration space, whereas endogenous velocities and forces are defined as elements of the tangent and cotangent spaces to the control space. Three ways of introducing the dynamically consistent Jacobian inverse are proposed, referred to as the geometric method, the force method, and the optimization method. A crucial concept underlying all these methods is a Riemannian metric in the space of control functions of the non-holonomic system as well as in its operational space. It has been shown that, similarly as for holonomic systems, the dynamically consistent Jacobian inverse obtained prevents the transmission of certain internal forces acting in the system from the endogenous configuration space to the operational space. This property is illustrated with the example of the Pioneer 2DX mobile platform. Performance of the new Jacobian inverse is demonstrated in the context of motion planning of the rolling ball.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Configurations</subject><subject>Control</subject><subject>Control systems</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Internal forces</subject><subject>Manipulators</subject><subject>Mechanical Engineering</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Steering</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtKAzEUhoMoWC8P4G7AdTT3TJZSb5WCG4XuQpLJ6JRpUpOpdN7elBFcuTrnwP_9Bz4ArjC6wQjJ24wxkhgiLCARksD9EZhhLmm51OoYzJAiDCKFVqfgLOc1QogSVM_A4n4MZtM50_dj5WLIXR58GKoX46LtTKi68O1T9lUbUxVigJ-xjyEWokrRxqHMPBZkky_ASWv67C9_5zl4f3x4mz_D5evTYn63hI5yNUAmPW2ENC2zjFPHy2aEMTUWjWNWqKZubcM8s4gz0ta-rp1U1rW4lp4xyuk5uJ56tyl-7Xwe9DruUigvNSFcMS6kECWFp5RLMefkW71N3cakUWOkD8b0ZEwXY_pgTO8LQyYml2z48Omv-X_oB3pBcE0</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Tchoń, Krzysztof</creator><creator>Ratajczak, Joanna</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160701</creationdate><title>Dynamically consistent Jacobian inverse for non-holonomic robotic systems</title><author>Tchoń, Krzysztof ; Ratajczak, Joanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-47e3d67af4b453c57afa6aa816dc4b69d8fbd4e4b0542f8e88c79bcf187e44353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Configurations</topic><topic>Control</topic><topic>Control systems</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Internal forces</topic><topic>Manipulators</topic><topic>Mechanical Engineering</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Steering</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchoń, Krzysztof</creatorcontrib><creatorcontrib>Ratajczak, Joanna</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchoń, Krzysztof</au><au>Ratajczak, Joanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically consistent Jacobian inverse for non-holonomic robotic systems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>85</volume><issue>1</issue><spage>107</spage><epage>122</epage><pages>107-122</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a strict analogy with the original derivation of the dynamically consistent Jacobian inverse for holonomic systems. The analogy is founded on replacing a finite-dimensional configuration space of the manipulation robot by the space of control functions steering the non-holonomic system. Consequently, a curve in the space of control functions corresponds to the manipulator’s trajectory in the configuration space, whereas endogenous velocities and forces are defined as elements of the tangent and cotangent spaces to the control space. Three ways of introducing the dynamically consistent Jacobian inverse are proposed, referred to as the geometric method, the force method, and the optimization method. A crucial concept underlying all these methods is a Riemannian metric in the space of control functions of the non-holonomic system as well as in its operational space. It has been shown that, similarly as for holonomic systems, the dynamically consistent Jacobian inverse obtained prevents the transmission of certain internal forces acting in the system from the endogenous configuration space to the operational space. This property is illustrated with the example of the Pioneer 2DX mobile platform. Performance of the new Jacobian inverse is demonstrated in the context of motion planning of the rolling ball.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2672-x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016-07, Vol.85 (1), p.107-122 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259456766 |
source | SpringerLink Journals |
subjects | Automotive Engineering Classical Mechanics Configurations Control Control systems Dynamical Systems Engineering Internal forces Manipulators Mechanical Engineering Motion planning Optimization Original Paper Robot arms Robotics Steering Vibration |
title | Dynamically consistent Jacobian inverse for non-holonomic robotic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20consistent%20Jacobian%20inverse%20for%20non-holonomic%20robotic%20systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Tcho%C5%84,%20Krzysztof&rft.date=2016-07-01&rft.volume=85&rft.issue=1&rft.spage=107&rft.epage=122&rft.pages=107-122&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2672-x&rft_dat=%3Cproquest_cross%3E2259456766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259456766&rft_id=info:pmid/&rfr_iscdi=true |