Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system

Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2017-10, Vol.90 (1), p.457-478
Hauptverfasser: Saeed, N. A., Kamel, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 1
container_start_page 457
container_title Nonlinear dynamics
container_volume 90
creator Saeed, N. A.
Kamel, M.
description Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.
doi_str_mv 10.1007/s11071-017-3675-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259454165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945830203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</originalsourceid><addsrcrecordid>eNp9kT1LBDEQhoMoeH78ALuAdXSSbDabUsRPBBsFu5DNTWRlL1mTnHD_3j3OwkabmeZ534F5CDnjcMEB9GXhHDRnwDWTrVZss0cWXGnJRGve9skCjGgYGHg7JEelfACAFNAtSL7ydfhCunLvEevgaY8uD_Gd9a7gktZ1nKdPseY0jphpTbSspyljKXR0FbMb6dfQZ1eHFAtNgToaUxyHOPfQRwzBp1ppTjVlWjal4uqEHAQ3Fjz92cfk9fbm5fqePT3fPVxfPTEvm6YyjQ04v-w8qoCdCY00XMjQmN4F1zmndQuo22BU2_sA4Dl2ywC8FcqpYHp5TM53vVNOn2ss1X6kdY7zSSuEMo1qeKv-o_jMdBIEyJniO8rnVErGYKc8rFzeWA52K8DuBNhZgN0KsJs5I3aZMm0_ivlX85-hbwUki2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454165</pqid></control><display><type>article</type><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><source>SpringerNature Journals</source><creator>Saeed, N. A. ; Kamel, M.</creator><creatorcontrib>Saeed, N. A. ; Kamel, M.</creatorcontrib><description>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3675-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuators ; Air gaps ; Amplitudes ; Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Control systems ; Controllers ; Dynamical Systems ; Eccentricity ; Electromagnetic coupling ; Engineering ; Feedback control ; Machinery ; Magnetic bearings ; Mathematical models ; Mechanical Engineering ; Military helicopters ; Nonlinearity ; Original Paper ; Rotating machinery ; Rotors ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2017-10, Vol.90 (1), p.457-478</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</citedby><cites>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3675-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3675-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saeed, N. A.</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</description><subject>Actuators</subject><subject>Air gaps</subject><subject>Amplitudes</subject><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Eccentricity</subject><subject>Electromagnetic coupling</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Machinery</subject><subject>Magnetic bearings</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Military helicopters</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Rotating machinery</subject><subject>Rotors</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kT1LBDEQhoMoeH78ALuAdXSSbDabUsRPBBsFu5DNTWRlL1mTnHD_3j3OwkabmeZ534F5CDnjcMEB9GXhHDRnwDWTrVZss0cWXGnJRGve9skCjGgYGHg7JEelfACAFNAtSL7ydfhCunLvEevgaY8uD_Gd9a7gktZ1nKdPseY0jphpTbSspyljKXR0FbMb6dfQZ1eHFAtNgToaUxyHOPfQRwzBp1ppTjVlWjal4uqEHAQ3Fjz92cfk9fbm5fqePT3fPVxfPTEvm6YyjQ04v-w8qoCdCY00XMjQmN4F1zmndQuo22BU2_sA4Dl2ywC8FcqpYHp5TM53vVNOn2ss1X6kdY7zSSuEMo1qeKv-o_jMdBIEyJniO8rnVErGYKc8rFzeWA52K8DuBNhZgN0KsJs5I3aZMm0_ivlX85-hbwUki2w</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Saeed, N. A.</creator><creator>Kamel, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><author>Saeed, N. A. ; Kamel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Air gaps</topic><topic>Amplitudes</topic><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Eccentricity</topic><topic>Electromagnetic coupling</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Machinery</topic><topic>Magnetic bearings</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Military helicopters</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Rotating machinery</topic><topic>Rotors</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, N. A.</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, N. A.</au><au>Kamel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>90</volume><issue>1</issue><spage>457</spage><epage>478</epage><pages>457-478</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3675-y</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2017-10, Vol.90 (1), p.457-478
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259454165
source SpringerNature Journals
subjects Actuators
Air gaps
Amplitudes
Automotive Engineering
Bifurcations
Classical Mechanics
Control
Control systems
Controllers
Dynamical Systems
Eccentricity
Electromagnetic coupling
Engineering
Feedback control
Machinery
Magnetic bearings
Mathematical models
Mechanical Engineering
Military helicopters
Nonlinearity
Original Paper
Rotating machinery
Rotors
Vibration
Vibration control
title Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20magnetic%20bearing-based%20tuned%20controller%20to%20suppress%20lateral%20vibrations%20of%20a%20nonlinear%20Jeffcott%20rotor%20system&rft.jtitle=Nonlinear%20dynamics&rft.au=Saeed,%20N.%20A.&rft.date=2017-10-01&rft.volume=90&rft.issue=1&rft.spage=457&rft.epage=478&rft.pages=457-478&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3675-y&rft_dat=%3Cproquest_cross%3E1945830203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454165&rft_id=info:pmid/&rfr_iscdi=true