Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system
Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2017-10, Vol.90 (1), p.457-478 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 478 |
---|---|
container_issue | 1 |
container_start_page | 457 |
container_title | Nonlinear dynamics |
container_volume | 90 |
creator | Saeed, N. A. Kamel, M. |
description | Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included. |
doi_str_mv | 10.1007/s11071-017-3675-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259454165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945830203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</originalsourceid><addsrcrecordid>eNp9kT1LBDEQhoMoeH78ALuAdXSSbDabUsRPBBsFu5DNTWRlL1mTnHD_3j3OwkabmeZ534F5CDnjcMEB9GXhHDRnwDWTrVZss0cWXGnJRGve9skCjGgYGHg7JEelfACAFNAtSL7ydfhCunLvEevgaY8uD_Gd9a7gktZ1nKdPseY0jphpTbSspyljKXR0FbMb6dfQZ1eHFAtNgToaUxyHOPfQRwzBp1ppTjVlWjal4uqEHAQ3Fjz92cfk9fbm5fqePT3fPVxfPTEvm6YyjQ04v-w8qoCdCY00XMjQmN4F1zmndQuo22BU2_sA4Dl2ywC8FcqpYHp5TM53vVNOn2ss1X6kdY7zSSuEMo1qeKv-o_jMdBIEyJniO8rnVErGYKc8rFzeWA52K8DuBNhZgN0KsJs5I3aZMm0_ivlX85-hbwUki2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454165</pqid></control><display><type>article</type><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><source>SpringerNature Journals</source><creator>Saeed, N. A. ; Kamel, M.</creator><creatorcontrib>Saeed, N. A. ; Kamel, M.</creatorcontrib><description>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-017-3675-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Actuators ; Air gaps ; Amplitudes ; Automotive Engineering ; Bifurcations ; Classical Mechanics ; Control ; Control systems ; Controllers ; Dynamical Systems ; Eccentricity ; Electromagnetic coupling ; Engineering ; Feedback control ; Machinery ; Magnetic bearings ; Mathematical models ; Mechanical Engineering ; Military helicopters ; Nonlinearity ; Original Paper ; Rotating machinery ; Rotors ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2017-10, Vol.90 (1), p.457-478</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</citedby><cites>FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-017-3675-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-017-3675-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saeed, N. A.</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</description><subject>Actuators</subject><subject>Air gaps</subject><subject>Amplitudes</subject><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Dynamical Systems</subject><subject>Eccentricity</subject><subject>Electromagnetic coupling</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Machinery</subject><subject>Magnetic bearings</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Military helicopters</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Rotating machinery</subject><subject>Rotors</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kT1LBDEQhoMoeH78ALuAdXSSbDabUsRPBBsFu5DNTWRlL1mTnHD_3j3OwkabmeZ534F5CDnjcMEB9GXhHDRnwDWTrVZss0cWXGnJRGve9skCjGgYGHg7JEelfACAFNAtSL7ydfhCunLvEevgaY8uD_Gd9a7gktZ1nKdPseY0jphpTbSspyljKXR0FbMb6dfQZ1eHFAtNgToaUxyHOPfQRwzBp1ppTjVlWjal4uqEHAQ3Fjz92cfk9fbm5fqePT3fPVxfPTEvm6YyjQ04v-w8qoCdCY00XMjQmN4F1zmndQuo22BU2_sA4Dl2ywC8FcqpYHp5TM53vVNOn2ss1X6kdY7zSSuEMo1qeKv-o_jMdBIEyJniO8rnVErGYKc8rFzeWA52K8DuBNhZgN0KsJs5I3aZMm0_ivlX85-hbwUki2w</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Saeed, N. A.</creator><creator>Kamel, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171001</creationdate><title>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</title><author>Saeed, N. A. ; Kamel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7e40acd8ce5fe89f439123f49bafa8aa7760e76f956bcf00c1e8df01625a5f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Air gaps</topic><topic>Amplitudes</topic><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Dynamical Systems</topic><topic>Eccentricity</topic><topic>Electromagnetic coupling</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Machinery</topic><topic>Magnetic bearings</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Military helicopters</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Rotating machinery</topic><topic>Rotors</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, N. A.</creatorcontrib><creatorcontrib>Kamel, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, N. A.</au><au>Kamel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>90</volume><issue>1</issue><spage>457</spage><epage>478</epage><pages>457-478</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Active magnetic bearing system is an up-to-date technology that supports rotors without physical contacts and facilitates the vibration control in rotating machinery. Within this research, a tuned positive position feedback controller is proposed to control the lateral vibrations in a Jeffcott rotor system having cubic and quadratic nonlinearities. The controller is integrated into the system via four electromagnetic poles that act as actuators. The nonlinearity due to the electromagnetic coupling is included in the system model. A second-order approximate solution to the system governing equations is sought by utilizing asymptotic analyses. Bifurcation behaviours are investigated for both the system and controller parameters. The influence of the air-gap size, bias current, disc eccentricity, feedback gain, and control gain on the vibration amplitudes has been explored. The analytical results approved that the proposed controller can reduce the vibration amplitudes close to zero at any spinning speed even at large disc eccentricity. Then, numerical confirmations for the acquired analytical results have been performed that illustrated an excellent agreement with the analytical ones. Finally, a comparison with already published articles is included.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-017-3675-y</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2017-10, Vol.90 (1), p.457-478 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2259454165 |
source | SpringerNature Journals |
subjects | Actuators Air gaps Amplitudes Automotive Engineering Bifurcations Classical Mechanics Control Control systems Controllers Dynamical Systems Eccentricity Electromagnetic coupling Engineering Feedback control Machinery Magnetic bearings Mathematical models Mechanical Engineering Military helicopters Nonlinearity Original Paper Rotating machinery Rotors Vibration Vibration control |
title | Active magnetic bearing-based tuned controller to suppress lateral vibrations of a nonlinear Jeffcott rotor system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20magnetic%20bearing-based%20tuned%20controller%20to%20suppress%20lateral%20vibrations%20of%20a%20nonlinear%20Jeffcott%20rotor%20system&rft.jtitle=Nonlinear%20dynamics&rft.au=Saeed,%20N.%20A.&rft.date=2017-10-01&rft.volume=90&rft.issue=1&rft.spage=457&rft.epage=478&rft.pages=457-478&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-017-3675-y&rft_dat=%3Cproquest_cross%3E1945830203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454165&rft_id=info:pmid/&rfr_iscdi=true |