Some discussions about variable separation of nonlinear models using Riccati equation expansion method

Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2015-08, Vol.81 (3), p.1553-1561
Hauptverfasser: Kong, Liang-Qian, Dai, Chao-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1561
container_issue 3
container_start_page 1553
container_title Nonlinear dynamics
container_volume 81
creator Kong, Liang-Qian
Dai, Chao-Qing
description Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm that these seem independent solutions exist some relations and actually depend on each other. Moreover, we discuss the construction of localized excitation based on variable separation solutions. Results indicate that for the (3+1)-dimensional two- or multi-component system, when we construct localized coherent structures for a special component based on variable separation solutions, we must note the corresponding structures constructed by the other component for the same equation for some nonlinear models in order to avoid the appearance of some divergent and un-physical structures. We hope that these results have potential application for the deep study of exact solutions of nonlinear models in physical, engineering and biophysical areas.
doi_str_mv 10.1007/s11071-015-2089-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2259454113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259454113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-bd920abe96628edd60b79ead743827ba55a792673eb078a5b63a93631b80d47e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuA6-pN0ibNUgZfMCD4gNmFpL0dO7RNJ2nF-fd2qODK1V2c75wLHyFXDG4YgLqNjIFiCbAs4ZDrZH9EFixTIuFSr4_JAjRPE9CwPiVnMW4BQEzcglRvvkVa1rEYY6x9F6l1fhzolw21dQ3SiL0Ndpgi6iva-a6pO7SBtr7EJtIx1t2GvtZFMTEUd-OM4ndvu8MebXH49OUFOalsE_Hy956Tj4f79-VTsnp5fF7erZJC5HJIXKk5WIdaSp5jWUpwSqMtVSpyrpzNMqs0l0qgA5XbzElhtZCCuRzKVKE4J9fzbh_8bsQ4mK0fQze9NJxnOs1SxsREsZkqgo8xYGX6ULc27A0Dc9BpZp1m0mkOOs1-6vC5Eye222D4W_6_9APIn3pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259454113</pqid></control><display><type>article</type><title>Some discussions about variable separation of nonlinear models using Riccati equation expansion method</title><source>SpringerLink Journals</source><creator>Kong, Liang-Qian ; Dai, Chao-Qing</creator><creatorcontrib>Kong, Liang-Qian ; Dai, Chao-Qing</creatorcontrib><description>Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm that these seem independent solutions exist some relations and actually depend on each other. Moreover, we discuss the construction of localized excitation based on variable separation solutions. Results indicate that for the (3+1)-dimensional two- or multi-component system, when we construct localized coherent structures for a special component based on variable separation solutions, we must note the corresponding structures constructed by the other component for the same equation for some nonlinear models in order to avoid the appearance of some divergent and un-physical structures. We hope that these results have potential application for the deep study of exact solutions of nonlinear models in physical, engineering and biophysical areas.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2089-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Burgers equation ; Classical Mechanics ; Construction ; Control ; Dynamical Systems ; Engineering ; Mechanical Engineering ; Original Paper ; Riccati equation ; Separation ; Vibration</subject><ispartof>Nonlinear dynamics, 2015-08, Vol.81 (3), p.1553-1561</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-bd920abe96628edd60b79ead743827ba55a792673eb078a5b63a93631b80d47e3</citedby><cites>FETCH-LOGICAL-c386t-bd920abe96628edd60b79ead743827ba55a792673eb078a5b63a93631b80d47e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2089-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2089-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><title>Some discussions about variable separation of nonlinear models using Riccati equation expansion method</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm that these seem independent solutions exist some relations and actually depend on each other. Moreover, we discuss the construction of localized excitation based on variable separation solutions. Results indicate that for the (3+1)-dimensional two- or multi-component system, when we construct localized coherent structures for a special component based on variable separation solutions, we must note the corresponding structures constructed by the other component for the same equation for some nonlinear models in order to avoid the appearance of some divergent and un-physical structures. We hope that these results have potential application for the deep study of exact solutions of nonlinear models in physical, engineering and biophysical areas.</description><subject>Automotive Engineering</subject><subject>Burgers equation</subject><subject>Classical Mechanics</subject><subject>Construction</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Riccati equation</subject><subject>Separation</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuA6-pN0ibNUgZfMCD4gNmFpL0dO7RNJ2nF-fd2qODK1V2c75wLHyFXDG4YgLqNjIFiCbAs4ZDrZH9EFixTIuFSr4_JAjRPE9CwPiVnMW4BQEzcglRvvkVa1rEYY6x9F6l1fhzolw21dQ3SiL0Ndpgi6iva-a6pO7SBtr7EJtIx1t2GvtZFMTEUd-OM4ndvu8MebXH49OUFOalsE_Hy956Tj4f79-VTsnp5fF7erZJC5HJIXKk5WIdaSp5jWUpwSqMtVSpyrpzNMqs0l0qgA5XbzElhtZCCuRzKVKE4J9fzbh_8bsQ4mK0fQze9NJxnOs1SxsREsZkqgo8xYGX6ULc27A0Dc9BpZp1m0mkOOs1-6vC5Eye222D4W_6_9APIn3pw</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Kong, Liang-Qian</creator><creator>Dai, Chao-Qing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150801</creationdate><title>Some discussions about variable separation of nonlinear models using Riccati equation expansion method</title><author>Kong, Liang-Qian ; Dai, Chao-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-bd920abe96628edd60b79ead743827ba55a792673eb078a5b63a93631b80d47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automotive Engineering</topic><topic>Burgers equation</topic><topic>Classical Mechanics</topic><topic>Construction</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Riccati equation</topic><topic>Separation</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Liang-Qian</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Liang-Qian</au><au>Dai, Chao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some discussions about variable separation of nonlinear models using Riccati equation expansion method</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>81</volume><issue>3</issue><spage>1553</spage><epage>1561</epage><pages>1553-1561</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Based on the Riccati equation expansion method with radical sign combined ansatz, nine kinds of variable separation solutions with different forms of (3+1)-dimensional Burgers equation are constructed. From these different solutions constructed by the Riccati equation expansion method, we confirm that these seem independent solutions exist some relations and actually depend on each other. Moreover, we discuss the construction of localized excitation based on variable separation solutions. Results indicate that for the (3+1)-dimensional two- or multi-component system, when we construct localized coherent structures for a special component based on variable separation solutions, we must note the corresponding structures constructed by the other component for the same equation for some nonlinear models in order to avoid the appearance of some divergent and un-physical structures. We hope that these results have potential application for the deep study of exact solutions of nonlinear models in physical, engineering and biophysical areas.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2089-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2015-08, Vol.81 (3), p.1553-1561
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2259454113
source SpringerLink Journals
subjects Automotive Engineering
Burgers equation
Classical Mechanics
Construction
Control
Dynamical Systems
Engineering
Mechanical Engineering
Original Paper
Riccati equation
Separation
Vibration
title Some discussions about variable separation of nonlinear models using Riccati equation expansion method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20discussions%20about%20variable%20separation%20of%20nonlinear%20models%20using%20Riccati%20equation%20expansion%20method&rft.jtitle=Nonlinear%20dynamics&rft.au=Kong,%20Liang-Qian&rft.date=2015-08-01&rft.volume=81&rft.issue=3&rft.spage=1553&rft.epage=1561&rft.pages=1553-1561&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2089-y&rft_dat=%3Cproquest_cross%3E2259454113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259454113&rft_id=info:pmid/&rfr_iscdi=true